What is Conservation Agriculture and Direct Seeding Mulch-Based Cropping System (SCV)?

Adapted from Lucien Séguy, João Carlos de Moraes Sà and Rolf Derpsch
I. Main principles and functions

II. The Extent of CA Adoption worldwide

III. CA on large farms

IV. CA on small farms
What is Conservation Agriculture and SCV?

Permanent Cover, No-till and Cropping Systems for Sustainable Agriculture, based on three principles:

- Permanent soil cover
- Minimum soil disturbance and no burning
- Diversified crop rotations
No-tillage is a “cornerstone” of Conservation Agriculture and can be practiced in both small and large farming systems.
In CA crop residues and/or cover crops are left on the soil surface (vs burned and/or incorporated in Conventional Tillage)

This organic cover (mulch) serves as physical protection for the soil surface and as substrate for the soil fauna

No-till of rice on *B. ruziziensis* mulch, Plain of Jars, Xieng Khouang
HOW CONSERVATION AGRICULTURE CAN BENEFIT FARMERS, AND COMMUNITY?

When the three principles (eliminating tillage, permanent soil cover and efficient crop sequences) are properly applied, farmers and the community will reap a number of agricultural, environmental and socioeconomic benefits.

It is a means to reconcile agricultural production, enhanced living conditions and environmental conservation.
AGRICULTURAL AND ENVIRONMENTAL BENEFITS OF CONSERVATION AGRICULTURE

Soils better protected from erosion
Enhanced soil structure and biological activity
Reduction in disease and pest pressure
Better water management
Contribution to biodiversity conservation
ECONOMIC BENEFITS OF CONSERVATION AGRICULTURE

- Reduction in production costs
- Yields comparable to or higher than those under conventional agriculture
- Agricultural production diversification
- Cumulated economic benefits on regional, national and global scales
Mains functions of DMC systems
Nutritional function via continuous mineralization of residues

Rice-bean on maize residues, September 2007, Paklay, Xayabury
Nutritional function for livestock by rational use of fodder

Improved pastureland, Pek district, Xieng Khouang
Integrated management of weeds through shade and/or allelopathic effects

No-till of maize on rice bean (Vigna umbellata) mulch. Kenthao, Xayabury
Crop residues protect the soil physically from sun, rain and wind (reducing climatic variation)
Mechanical actions (hoeing, ploughing) are replaced by biological improvement of soil structure by continuous flux of Carbon (crop residues)
- Higher % of water infiltration & less runoff allowing for higher moisture storage
- Lower water evaporation losses
- Increased water use efficiency by increasing the water holding capacity of the soil
Belowground

Deep and strong rooting systems of *Eleusine coracana* and *Cajanus cajun*

- Recycling nutrients leached deep into the soil below soil layers used by cash crops or rice by deep rooting systems of the cover crops
One of the main functions of continuous dry matter input is to enhance belowground macro fauna and microbial activity which improve soil structure and plant nutrition.
The soil micro-organisms and soil fauna take over the tillage function and soil nutrient balancing.
World wide adoption of No-tillage 2004-05

(Million ha)

Total 95 Million ha

Canada 12.5
USA 25.3
Brazil 23.6
Paraguay 1.7
Argentina 18.3
Australia 9.4
Rest of the World 1.4

(Derpsch, 2005)
EXAMPLES OF LARGE SCALE NO-TILL FARMING SYSTEMS
EXAMPLES OF NO-TILLAGE ON SMALL FARMS

Sowing of maize in Kenthao, Lao PDR
Adoption of DMC systems with smallholders

<table>
<thead>
<tr>
<th>Country</th>
<th>Area (ha)</th>
<th>N° of farmers</th>
<th>Area/farm (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>173,000</td>
<td>38,000</td>
<td>4.55</td>
</tr>
<tr>
<td>India</td>
<td>130,000</td>
<td>26,000</td>
<td>5.00</td>
</tr>
<tr>
<td>Pakistan</td>
<td>80,000</td>
<td>5,500</td>
<td>14.55</td>
</tr>
<tr>
<td>Ghana</td>
<td>45,000</td>
<td>100,000</td>
<td>0.45</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>10,000</td>
<td>30,000</td>
<td>0.33</td>
</tr>
<tr>
<td>Paraguay</td>
<td>6,000</td>
<td>2,300</td>
<td>2.61</td>
</tr>
</tbody>
</table>

Source: Wall & Ekboir, 2002

It is estimated today that 500,000 to 600,000 small farms practiced no-tillage in Brazil; 300,000 in Ghana; 200,000 in the Indo-Gangetic plain.
No-tillage on small farm in Brazil
No-tillage on small farm in Brazil
Sowing of maize in Paklay, Lao PDR
Almost all advantages of the no-till system...

come from the permanent cover of the soil

No-till of rice on *B. ruziziensis* mulch, Plain of Jars, Xieng Khouang
Continuous and full soil cover is the key factor for successful CA/DMC systems and for Sustainable Agriculture.

No-till of rice on *S. guianensis* mulch, Plain of Jars, Xieng Khouang