DMC Systems for Rice-Beef Production in the Plain of Jars, Xieng Khouang Province, Lao PDR: An Example of “Creation-Validation” Methodological Approach

Pascal Lienhard, Florent Tivet, Bouapha Bounkhampone, Thammakham Sosomphou, Sengpanh Sayphoummie, Ienlang Phanthanivong and Lucien Séguy
Location and main characteristics

Plain of Jars (900-1200m)

• Xieng Khouang province, North-eastern Lao PDR
• 3 main districts concerned (Pek, Phoukout and Paxay)
• About 60,000 ha of acid infertile savannah grasslands
• Low pH (5.0) and deficiencies in main nutrients (NPK, Ca et Mg)
• Severe Aluminium toxicity
Main farming systems & current rural development strategies

Plain of Jars (900-1200m)

• Only 5% of total surface is cultivated, 80% in paddy rice
• Main farming system: rice production in the paddy land and extensive livestock production on the hills
Main farming systems & current rural
development strategies

Plain of Jars (900-1200m)
- Only 5% of total surface is cultivated, 80% in paddy rice
- Main farming system: rice production in the paddy land and extensive livestock production on the hills
Main farming systems & current rural development strategies

Plain of Jars (900-1200m)
- Only 5% of total surface is cultivated, 80% in paddy rice
- Main farming system: rice production in the paddy land and extensive livestock production on the hills
- Investment in irrigation networks to increase paddy land area and rice production
Main farming systems & current rural development strategies

Plain of Jars (900-1200m)
- Only 5% of total surface is cultivated, 80% in paddy rice
- Main farming system: rice production in the paddy land and extensive livestock production on the hills
- Investment in irrigation networks to increase paddy land area and rice production
- Use of ploughing for reforestation and upland crops development
Main farming systems & current rural development strategies

Plain of Jars (900-1200m)
• Only 5% of total surface is cultivated, 80% in paddy rice
• Main farming system: rice production in the paddy land and extensive livestock production on the hills
• Investment in irrigation networks to increase paddy land area and rice production
• Use of ploughing for reforestation and upland crops development
Main farming systems & current rural development strategies

Plain of Jars (900-1200m)
- Only 5% of total surface is cultivated, 80% in paddy rice
- Main farming system: rice production in the paddy land and extensive livestock production on the hills
- Investment in irrigation networks to increase paddy land area and rice production
- Use of ploughing for reforestation and upland crops development
- Burning of native pastureland to facilitate pasture regrowth
Main farming systems & current rural development strategies

Plain of Jars (900-1200m)
• Only 5% of total surface is cultivated, 80% in paddy rice
• Main farming system: rice production in the paddy land and extensive livestock production on the hills
• Investment in irrigation networks to increase paddy land area and rice production
• Use of ploughing for reforestation and upland crops development
• Burning of native pastureland to facilitate pasture re-growth
Main challenges for Agriculture

2 priorities for the government:
• Increase Rice production
• Develop Cattle industry
Project approach to enhance rice-beef production in the plain of Jars?

A double approach:

• DMC technologies as technical approach
• “Creation-Validation” approach as R&D approach
What is Conservation Agriculture and Direct Seeding Mulch-Based Cropping System (DMC)?

3 principles:

- Permanent soil cover
- Minimum soil disturbance (no tillage) and no burning
- Diversified crop rotations
“CREATION-VALIDATION” APPROACH
5 interdependent components

Initial assessment
- Physical, human and economical environments
- Typology of Farming Systems

Reference data acquisition
- Long-term experiments in creation sites
- Generation of a large basket of technologies
- Characterization of biological and physicochemical processes (soil fertility evolution)

Adaptation and validation with smallholders
- On-farm experiments with farmers groups
- Scale: plot, village and landscape level
- Analyses of the conditions for adoption

Training and Communication
- Various supports for various publics (farmers, extension agents and researchers)
- Information for policy-makers and stakeholders

Monitoring and Evaluation
- Feed-back for R&D
- Methodological tools for R&D approach
- Evaluation of constraints/potential for extension
METHODOLOGY: CREATION-VALIDATION APPROACH

5 interdependent components

- **Initial assessment**
- **Reference data acquisition**
- **Adaptation and validation with smallholders**
- **Training and Communication**
- **Monitoring and Evaluation**

Specificity of the approach:
- Several validation steps with farmers groups
- Important feedback between research in creation sites and validation in Farmers groups
Research topics and reference data acquisition in Creation sites

<table>
<thead>
<tr>
<th>Topics</th>
<th>Data collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Direct Seeding of Improved forage species on degraded Pastureland”</td>
<td>• Species collection x fertilisation</td>
</tr>
<tr>
<td></td>
<td>• Above ground and below ground biomass production (forage adaptability)</td>
</tr>
<tr>
<td></td>
<td>• Fodder quality (protein content)</td>
</tr>
<tr>
<td></td>
<td>• Seeds production</td>
</tr>
<tr>
<td>“Cattle Fattening activities”</td>
<td>• Benefits/costs analysis</td>
</tr>
<tr>
<td></td>
<td>• Average Animal Daily Growth Rate (DGR) assessment</td>
</tr>
<tr>
<td></td>
<td>• Easy tools for GR monitoring without balance</td>
</tr>
<tr>
<td>“Regeneration of improved pastureland using rice as a cash crops”</td>
<td>• Cropping systems (rice cultivars x species association modalities x fertility)</td>
</tr>
<tr>
<td></td>
<td>• Technical feasibility</td>
</tr>
<tr>
<td></td>
<td>• Benefits/costs analysis</td>
</tr>
</tbody>
</table>
5-year rotational sequence initially proposed to enhance rice-beef production in the Plain of Jars

1st year: Improved pasture land implementation

- Use of Brachiaria ruziziensis as improved forage specie
- No animal grazing or ruzi grass exportation to insure good pasture implementation
- Forage seeds collection and sale to cover improved pasture land implementation costs
5-year rotational sequence initially proposed to enhance rice-beef production in the Plain of Jars

2nd to 4th year: Fattening of young bulls

- Direct grazing is advised (vs forage cut & carry) to provide nutrients return to the soil through animals dejections

- Pasture plot is divided in 4 blocks to provide 4-grazing period per month and allow best protein content in the forage leaves
5-year rotational sequence initially proposed to enhance rice-beef production in the Plain of Jars

5th year: Direct seeding of rice as a cash crop to finance improved pastureland re-installation
5-year rotational sequence: Costs/Benefits expected

<table>
<thead>
<tr>
<th>Plot of 1 ha</th>
<th>1st year</th>
<th>2nd year</th>
<th>3rd year</th>
<th>4th year</th>
<th>5th year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pastureland implemen.</td>
<td>Bulls fattening</td>
<td>Bulls fattening</td>
<td>Bulls fattening</td>
<td>Pastureland re-establishment</td>
</tr>
<tr>
<td>COSTS (US $)</td>
<td>240</td>
<td>765</td>
<td>803</td>
<td>842</td>
<td>303</td>
</tr>
<tr>
<td>Plot fencing and designing</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Pastureland implementation</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>120</td>
<td>125</td>
<td>132</td>
<td>139</td>
<td>146</td>
</tr>
<tr>
<td>Animals & animals care</td>
<td>0</td>
<td>615</td>
<td>645</td>
<td>675</td>
<td>0</td>
</tr>
<tr>
<td>Credit requirement</td>
<td>220</td>
<td>420</td>
<td>440</td>
<td>470</td>
<td>286</td>
</tr>
<tr>
<td>Credit interest</td>
<td>20</td>
<td>25</td>
<td>26</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>LABOUR (md.ha-1)</td>
<td>68</td>
<td>72</td>
<td>62</td>
<td>62</td>
<td>55</td>
</tr>
<tr>
<td>Fencing & Fence maintenance</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Crops implementation and management</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Seeds harvesting</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>Bulls management</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>BENEFITS (US $)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulls sale</td>
<td>0</td>
<td>1 000</td>
<td>1 050</td>
<td>1 100</td>
<td>0</td>
</tr>
<tr>
<td>Seeds production</td>
<td>210</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>395</td>
</tr>
<tr>
<td>GROSS INCOME (US $)</td>
<td>210</td>
<td>1 000</td>
<td>1 050</td>
<td>1 100</td>
<td>395</td>
</tr>
<tr>
<td>NET INCOME (US $)</td>
<td>-30</td>
<td>235</td>
<td>247</td>
<td>258</td>
<td>92</td>
</tr>
<tr>
<td>LABOUR PRODUCTIVITY (US $/ wd)</td>
<td>-0,44</td>
<td>3,26</td>
<td>3,98</td>
<td>4,16</td>
<td>1,67</td>
</tr>
</tbody>
</table>
5-year rotational sequence: Costs/Benefits expected

- Total net income on the 5 years: 800 $US/ha
- Average net income of 160 $US/ha/year
- Average production costs of 591 $US/ha (bulls included)
- Average net income represent 27% of average production cost (risk factor)
- Average labour productivity of 2,53 $US/working day
Validation process: the different steps...

<table>
<thead>
<tr>
<th>Topics</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
</tr>
</thead>
</table>
| “Direct Seeding of Improved forage species on degraded Pastureland” | • Technical (training, technicians, equipment) & financial (credit) support provided
• Financial risk shared with farmers (security if failure) | • Technical & financial support provided
• Financial risk assumed by farmers | • Technical support provided
• Financial support provided by banking sector
• Financial risk assumed by farmers |
| “Cattle Fattening activities” | • 2006: 6 villages, 6 farmers groups, 24 farmers, 14 ha | • 2007: 12 villages, 13 farmers groups, 68 farmers, 62 ha | • 2008: Partnerships initiated with NNRBDP and Agri. Dev. Bank |
| “Regeneration of improved pastureland using rice as a cash crops” | • Not yet started with farmers groups | • 2008: 12 villages, 13 farmers groups, 70 farmers, 62 ha | |
Validation process: data collected...

1- On-field monitoring

- Technical feasibility by farmers (skills required for equipment, fertilizer use etc.)
- Forage seeds production
- Stoking rate management
- Animal Daily growth monitoring

2- Farmers point of view assessment

- 2 meeting with farmers (june 2007 & august 2008)
- Farmers point of view assessed using PRA methods
Lessons learnt from Validation process...

Improved pastureland use assessment after 3 years of \textit{in situ} validation with farmers groups

Only 39\% of farmers are using improved pastureland as initially expected
Lessons learnt from Validation process...

Main constraints to be:

(i) Market channel constraints…
Forage seeds market limitations

“We still have forage seeds we collected but no one to buy it”

(Farmers from My and Khangpeung village)
Lessons learnt from Validation process...

Main constraints to be:

(i) Market channel constraints…
… or malfunctioning (cattle)

- Animal availability

- Farmers / traders interactions

“I don’t have animals to do fattening”
(Farmer from Ngoy village)

“It is difficult to find young bulls for purchase”
(Farmer from Xoy Nafa village)

“It is difficult to sale animals at a good price: traders propose us lower animal weigh unit price [kips/ living kg] that what we paid when we bought them! ...” (Farmer from My village)

“Traders tell us that this is now difficult to sale in Vietnam, but we don’t know!”
(Farmer from Khangpeung village)

“We need contract with traders to buy and sale animals at a defined price"
(Farmers from My village)
Lessons learnt from Validation process...

Main constraints to be:

(ii) Fencing costs and maintenance

“Bamboo fence are not solid enough; cattle can easily penetrate and destroy the forage plot; if we use barber wire, it is expensive and then it’s difficult to pay back the credit and even save money”

(Farmers from Xoy Nafa village)

A 4-line barber wire with wood pots fence cost an average price of 270 $US/ 400m (ha)
Lessons learnt from Validation process...

Main constraints to be:

(iii) Unequal inflation rates between inputs and outputs

Fertilizer cost has been increasing of 127% since 2005 (in relation with oil crisis) while cattle weight unit price was only increasing of 19%
Lessons learnt from Validation process...

Main constraints to be:

(iv) credit access, amount and payment modalities

- Credit access
 “If you can not provide financial guaranties, you can not get any credit”
 (Farmers from Nakhouan village)

- Credit interest rate
 “Procedures to get a credit are too complicated”
 (Many farmers)

- Credit amount
 “Credit interest is too high! We need reduced interest rate for animal raising”
 (All farmers)

- Credit length
 “Credit amounts proposed are too limited; we need higher credit amount for animal purchase”
 (Farmers from My and Pouhoum village)

- Credit payment modalities
 “Credit length proposed is too short; we need long-term credit for animal raising”
 (Farmers from Khay village)

 “You ask for a credit and then money arrive 3 months later; it’s too late!”
 (Many farmers)

 “Money disbursement is too slow”
 (Many farmers)
Lessons learnt from Validation process...

Main constraints to be:

(v) Technical skills required for good-quality pastureland implementation

“Forage establishment was bad due to important delay between land preparation and forage sowing”
(Farmers from Gnapsy village)

“There are many weeds in my forage plots since they were not well controlled before forage sowing”
(One farmer from Leng village)
Discussions and proposals were made on:

(i) Credit access: discussions between Provincial Agricultural and Forestry Office, Nam Ngum Development Project and Xieng Khouang Agricultural Development Bank (ADB) have allowed to:
 • replace financial individual guaranties with collective ones (farmers group)
 • decrease credit interest rate for animal raising from 15 to 12% a year
 • propose an average amount of 7,000,000 kips (800 $US) to farmers involved in Cattle fattening activities

(ii) Cattle market channel malfunctioning: visits and exchanges between traders and farmers have been scheduled

(iii) VCD Training supports (what to do and what not to do) are under process
This feedback as also given rise to new research topics:

(i) How to reduce fertilizer use (main production cost)?

(ii) How to generate higher incomes during the first year of implementation?
New farming systems have been developed based on:

(i) Direct sowing, the first year, of rice associated with forage species directly on degraded native pastureland
(ii) Use of mix fodder species (ruzi grass associated to stylosanthes guianensis CIAT 184, a perennial legume fodder able to fix N from the atmosphere)

New system should allow to:

(i) include fencing cost (bamboo fence associated with living species)
(ii) stop system dependence regarding forage seeds market
(iii) get positive net income from the 1st year
<table>
<thead>
<tr>
<th>Plot of 1 ha</th>
<th>1st year</th>
<th>2nd year</th>
<th>3rd year</th>
<th>4th year</th>
<th>5th year</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTS (US $)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS of Rice + forage</td>
<td>542</td>
<td>1 044</td>
<td>956</td>
<td>998</td>
<td>573</td>
</tr>
<tr>
<td>Plot fencing and designing</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Crop implementation</td>
<td>165</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>230</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>290</td>
<td>252</td>
<td>135</td>
<td>140</td>
<td>292</td>
</tr>
<tr>
<td>Animals & animals care</td>
<td>0</td>
<td>735</td>
<td>770</td>
<td>805</td>
<td>0</td>
</tr>
<tr>
<td>Credit requirement</td>
<td>455</td>
<td>620</td>
<td>520</td>
<td>543</td>
<td>522</td>
</tr>
<tr>
<td>Credit interest</td>
<td>27</td>
<td>37</td>
<td>31</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>LABOUR (md.ha-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fence & fence maintenance</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Crops implementation and management</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Seeds harvesting</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Bulls management</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>BENEFITS (US $)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulls sale</td>
<td>0</td>
<td>1 360</td>
<td>1 430</td>
<td>1 500</td>
<td>0</td>
</tr>
<tr>
<td>Seeds production</td>
<td>575</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>860</td>
</tr>
<tr>
<td>GROSS INCOME (US $)</td>
<td>575</td>
<td>1 360</td>
<td>1 430</td>
<td>1 500</td>
<td>860</td>
</tr>
<tr>
<td>NET INCOME (US $)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>316</td>
<td>474</td>
<td>502</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>LABOUR PRODUCTIVITY (US $/ wd)</td>
<td>0,45</td>
<td>4,39</td>
<td>7,64</td>
<td>8,10</td>
<td>4,78</td>
</tr>
</tbody>
</table>
• Total net income on the 5 years: 1145 $US/ha
• Average net income of 322 $US/ha/year
• Average production costs of 823 $US/ha (bulls included)
• Average net income represent 39% of average production cost (risk factor)
• Average labour productivity of 5,1 $US/ha/working day
Other DMC systems under evaluation for the plain of jars: the rice-stylosanthes 2-years rotational sequence

Regarding:
- good technical results obtained in creation site with direct seeding of rice on degraded pastureland,
- Paddy rice increase (+85% since beginning of 2006)

Rice-stylo 2-years cropping system could be another interesting system for the Plain of Jars with:
(i) A production of rice every 2 years on the same plot
(ii) A steady increase of soil fertility related to stylo cover
(iii) Lower production costs and credit need
Rice-stylo system presently under evaluation with farmers groups
This rice-beef system “creation-validation” process shows:

(i) the need to maintain research activities into the development process and,

(ii) the merits of the “creation site / farmer validation group” system for determining the potential for technology dissemination.
Thank you for your attention!