ECOPHYSIOLOGIE. — Cinétique de l’assimilation de l’azote d’origine lombricienne par une végétation prairiale non perturbée. Note de Marcel B. Bouché et Gérard Ferrière, présentée par Henri Duranton.

Pour la première fois, un transfert d’élément chimique entre trois compartiments (lombriciens, sol, plantes) dans un sol non perturbé a pu être observé dans un milieu naturel. Nous avons exploité la possibilité de co-marquer (coloration + isotope) des lombriciens et l’aptitude de ces animaux à pénétrer le sol, pour suivre à partir de ces annélides les mouvements d’azote 15N vers le sol, les racines et les parties végétales aériennes. Dans ces conditions, et au printemps, l’échange d’azote lombriciens-plantes s’est avéré univoque : l’azote des excréta lombriciens après un bref séjour dans le sol s’accumule pratiquement en totalité dans les plantes. Cette portion du cycle de l’azote a pu être quantifiée sous forme de fonctions mathématiques. Celles-ci révèlent que l’assimilation végétale de l’azote excrété par les lombriciens se fait selon deux cinétiques, l’une attribuable aux excréta quasi assimilables par les plantes (ammoniaque, urée,...), l’autre aux mucus cutanés nécessitant une dégradation microbienne pour libérer leur azote sous forme minérale.

ECOPHYSIOLOGY. — Assimilation cinetics by plants of nitrogen from earthworms in a non-disturbed grassland.

For the first time, a chemical element flow through three compartments (earthworms, soil, plants) in a non-disturbed soil has been described in a natural environment. We used co-labelled (coloration+isotope) earthworms and their ability to penetrate the soil. This allows the introduction of a 15N labelled compartment, to recognize it (coloration), and to follow nitrogen movements in various compartments (soil, roots, above ground plant organs herbage). In such conditions, earthworm-plants transfers in spring were univocal: nitrogen from earthworms was quickly passing through the soil and was accumulated in plants almost entirely. This part of the nitrogen cycle was expressed quantitatively as mathematical functions. These functions show a two cinetics plant assimilation of nitrogen from earthworms. One could be assigned to almost assimilable excretion products (as ammonia, urea,...), the other allotted to skin mucus which need a microbial degradation before nitrogen assimilation by plants.

INTRODUCTION. — La mise au point d’une méthode de mesure du débit d’azote excrété par une biomasse constante de *Nicostrilus longus longus* (Ude) (Lumbricidae, Oligochaeta) adultes, a été présentée dans une précédente Note [1]. Cette méthode, fondée sur un co-marquage (coloration permettant de reconnaître des animaux dont l’azote est uniformément marqué au 15N), permet, en replaçant ces animaux sur le sol et en les laissant spontanément reprendre leur place dans ce milieu structuré (minéraux, racines, microorganismes, animaux), d’y introduire un compartiment biologique sans en détruire l’ordonnance. A partir de cette source d’azote marqué, il a été possible de suivre le transfert de cet élément vers d’autres compartiments du système sol-végétation d’une prairie. Notre Note porte sur la description de ces transferts.

MATERIEL ET METHODE. — Nous avons pratiqué notre expérience dans une prairie permanente de l’Abbaye de Citeaux (Côte-d’Or) (parcelle dite de la Glacière), dont l’ancienneté remonte à la déforestation initiale lors de la fondation de l’abbaye (XIIe siècle). Dans ce milieu équilibré nous avons introduit des cadres en tole de 50 x 50 x 50 cm (*fig. 1*) en les enfouissant au marteau. Cette opération a été pratiquée 2 ans avant l’expérience proprement dite pour permettre aux structures biologiques (racines, galeries) de se reconstituer au contact du cadre.

Les lombriciens ont été capturés dans cette prairie, colorés, puis par un élevage de laboratoire de 50 jours marqués au 15N (taux de renouvellement de l’azote 96,6 %) selon la méthode décrite dans la Note précédente [1]. Les lombriciens ont été ensuite subdivisés en lots de quatre individus et chaque lot (excepté un lot immédiatement analysé au temps $j=0$) a été relâché dans un cadre. Les lots ont ensuite été recapturés respectivement aux temps 1, 2, 4, 8, 14, 20, 26 et 40 jours. A chaque recapture le cadre récepteur du lot a été prélevé dans son ensemble et subdivisé en partie végétale aérienne (Pa), trichures (T) (=fèces déposées en surface depuis 2 jours) et sol jusqu’à -25 cm. Ce sol a été placé dans un bac recevant une solution d’hexaméthaphosphate de sodium, pour disperser les colloïdes, et de formol, pour bloquer les processus biologiques, puis, 48 h plus tard, lavé et trié manuellement sur tamis 4 mm. Cela a permis de séparer les racines (Pr) du sol (S). Quatre prises de 10 g de sol ont servi aux analyses. A la recapture, les lombriciens sont immédiatement tués à l’eau chaude (80°C) puis fixés au formol. Cette fixation bloquant les processus
biologiques sans apport d’azote permet de différencier éventuellement les opérations de dissection, séparant le contenu du tube digestif (= endentère E) du lombricien (L) lui-même.

Les diverses fractions Pa, Pr1, L, S, E, T issues d’un cadre ont ensuite été analysées en termes d’azote totale et d’isotope 15N selon la procédure décrite dans la Note précédente [1]. Pour tenir compte de la composition en 15N naturellement présente dans les diverses fractions, et ne prendre en considération que l’azote provenant des quatre lombriciens marqués, tous les calculs portent sur l’enrichissement (ou l’appauvrissement de L) en 15N initialement introduit par les lombriciens notés ‘N’. Cet enrichissement n’est pas rigoureusement égal d’un bac à l’autre, les quatre individus adultes ayant des poids voisins mais non identiques, leurs apports en 15N (proportionnels au poids) ont été légèrement différents. Pour corriger ces différences entre bacs et faciliter l’utilisation des résultats, toutes les proportions de 15N d’un même bac ont été multipliées par une constante K rapportant à 1 000 mg la quantité 15N réelle (R) apportée à j = 0 (K = 1/R). Ce coefficient K étant calculé pour chaque cadre.

En résumé, les données sont présentées de sorte que l’apport d’azote introduit, initialement lombricien, de 1 g au j0 soit suivi dans les diverses fractions (= compartiments) aux jours 1, 2, 4, 8, 14, 20, 26 et 40. Durant l’expérience, les conditions pédologiques relativement stables [1] et la possibilité pour Nicodrilus longus d’ajuster sa température par un choix (thermopreferendum) dans le gradient thermique du sol ([1], [3]), ont créé pour cet animal des conditions relativement constantes.

Les données ont ensuite été ajustées à des fonctions mathématiques par une méthode Simplex [3] de régression non linéaire, grâce à un logiciel programmé par F. Sorrentino (comm. pers.). Ce programme optimise au mieux une fonction « proposée » en calculant les paramètres par itération et produit par ailleurs une appréciation de la qualité de l’accord entre points observés et ajustés sous la forme de la somme de leurs carrés (SCE = Somme des Carrés des Écartés). Ces fonctions d’état (du 15N de chaque fraction à un temps j) nous permettent par la fonction dérivée de connaître le bilan entrée-sortie du compartiment considéré (L, E, Pa, Pr1, L, T, S).

RÉSULTATS. — Les données observées sont présentées en pour mille d’15N en fonction du temps (jours) sous forme graphique (fig. 2, 3, 5) avec en outre extrapolation (fig. 4) ou simulation (fig. 5).

La figure 2 permet de suivre l’évolution en fonction du temps de 15N dans les divers compartiments étudiés. Nous constatons un passage rapide de l’azote des lombriciens (qui perdent 15N) aux plantes (qui accumulent 15N), il n’y a pratiquement qu’entrée dans les plantes car elles sont en pleine croissance printanière le jour j = 0 étant le 13 avril 1982.

La figure 3 présente ces résultats en données cumulées. L’15N total observé dans les cadres va en diminuant jusqu’au 14e jour puis augmente : l’azote « sorti du système »

EXPLICATIONS DES PLANCHES

Fig. 1. — Schéma du dispositif mis en place dans la prairie pour la mesure des échanges d’azote entre compartiments du sol. A, cube métallique ouvert sur les faces inférieure et supérieure (côté = 50 cm); B, grillage de protection contre les Oiseaux. Quatre lombriciens marqués au 15N sont introduits par cube.

Fig. 2. — Section of the device used to measure nitrogen movements in a grassland soil. A, cubic iron frame (open at top and below) (sizes: 50 cm); B, net to protect against birds. Four 15N labelled earthworms are introduced in each cubic frame.

Fig. 2. — Distribution en prairie de l’azote apporté initiallement (‘N’) par les lombriciens (L), en pour mille de 15N. S 1 : sol de 0 à −25 cm (y compris les turricules frais : + T); Pa, organes végétaux aériens; Pr1, racines de 0 à −25 cm; Pr2, extrapolation aux racines en dessous 25 cm. L’endentère (E) est négligeable [attention à l’échelle de cette courbe (G x 20)].

Fig. 2. — Nitrogen distribution in the grassland, in per mille of the initial 15N input by earthworms (L). S 1: soil 0 to −25 cm (including fresh earthworm casts on soil T); Pa: aboveground plant parts; Pr1: roots from 0 to −25 cm depth; Pr2: extrapolation to roots below −25 cm depth. The gut content (E) is negligible (attention: scale for E is M x 20).

Fig. 3. — Courbes cumulées de la distribution de l’azote marqué, d’origine lombricienne dans les divers compartiments observés (mêmes symboles qu’à la figure 2).

Fig. 3. — Cumulated curves of the labelled nitrogen in the various observed compartments (symbols as Figure 2).
Planche II

Fig. 4. — Courbes cumulées de la distribution de l'azote marqué, initialement lombricien, dans les divers compartiments observés ou extrapolés (mêmes symboles que pour la figure 2). Le compartiment de transfert entre lombriciens et plantes (CTLIP) comporte le sol (S + T), mais en outre une fraction importante en profondeur (CTLP moins S : zone grisée).

Fig. 4. — Cumulated curves of the labelled nitrogen in the various observed and extrapolated compartments (symbols as Figure 2). The transfert compartment from earthworms to plants (CTLIP) includes the soil (S + T) and also a deep fraction (CTLP minus S: tint zone).

Fig. 5. — Proportion d'azote initialement d'origine lombricienne absorbée par les plantes au cours de l'expérience en prairie permanente : données observées (triangles) et mathématiquement simulées (courbe) sur 60 jours.

Fig. 5. — Labelled nitrogen assimilated by plants (from earthworm excretions) during the experimentation in a permanent grassland. Observed data (triangles) and mathematical simulation (curve) on 60 days.

Fig. 6. — Illustration (du haut vers le bas) de la démarche mathématique suivie pour construire la loi d'ajustement hyperbole-logistique (x = jour, K = 1 000 ; a, b, c sont des paramètres).

Fig. 6. — Illustration of the mathematical steps used to built the double function (both hyperbolic and logistic) (x = day: K = 1,000 ; a, b, c are parameters).

revient régulièrement dans celui-ci. Nous interprétons ce phénomène comme résultant des limites de notre échantillon en profondeur (−25 cm). N. longus possède des galeries profondes subverticales (jusqu'à environ −120 cm) où il excrète et le système racinaire profond de −25 à −100 cm (6,3 % des racines) a assuré après assimilation la remontée de ¹⁴N dans les tissus végétaux au-dessus de −25 cm.

Figure 4 : nous admettons que ces racines profondes ont accumulé à la même concentration que de 0 à −25 cm et nous leur attribuons au grata de leur masse, une fraction de ¹⁴N (Pr 2).

Le compartiment lombricien (L) contient ¹⁴N selon une fonction :

\[y = e^{-0,218} + 5,371 + e^{-0,064} + 6,613, \quad \text{SCE} = 1,835, \]

permettant de calculer le débit d'excrétion lorsqu'aucun renouvellement n'a encore eu lieu (marquage homogène) (y₀ = −105; soit un bilan négatif de 105 mg/j par gramme d'azote corporel). L'¹⁴N parvenu dans l'endentère (E) est très faible, sujet à erreur (artefact de dissection) et de fait, la dissection s'avère inutile. La somme L + E permet un ajustement et une mesure d'excrétion (106 mg/j par gramme d'azote tissulaire) très voisins de l'estimation sur L seul.

L'¹⁴N parvenant dans les turricules (représentant une fraction de fèces fraîches) est ajustable comme l'excrétion lombricienne, selon une double exponentielle :

\[y = e^{-0,090} + 0,122 + e^{-0,673} + 0,744, \quad \text{SCE} = 3,69, \]

donnant un débit journalier par cette voie de 1,5 mg/j alors que la quantité d'azote totale dans les turricules est de 170 mg/j; donc seulement 1,3 % de l'azote des turricules est d'origine lombricienne. Contrairement à ce qui a été proposé [4], l'azote des fèces ne serait pratiquement pas d'origine lombricienne mais résulterait de la poursuite de la dégradation des aliments non assimilés par l'animal.

L'assimilation d'¹⁴N par les plantes en 40 jours représente 96 % de l'azote corporel initialement apporté par les lombriciens (fig. 5). Sa cinétique présente une allure beaucoup moins simple. Après de multiples essais, nous avons obtenu la SCE minimale avec une double fonction logistique et hyperbolique dont le mode d'élaboration est donné sur la figure 6 (j = jour; SCE = 3 487) :

\[
y = \frac{1 000}{1 + (6,73 - 1) e^{-0,102}} + \frac{J}{0,00673 + 0,01628} - \frac{1}{0,0673}.\]
L'erreur moyenne d'ajustement des points est de 6 %. La loi logistique traduit l'épuisement d'une ressource limitée (cas de l'azote initial) et la loi hyperbolique une « surconsommation initiale » discutée ci-dessous. La connaissance des fonctions d'excrétion lombricienne au terrain et d'assimilation végétale nous a permis de calculer un temps moyen de passage de l'azote entre ces deux types d'organismes (= 9,4 jours).

DÉS电线ssiON ET CONCLUSIONS. — Contrairement à ce qui était supposé, l'azote excrété par les lombriciens dans une prairie permanente au printemps, s'accumule dans les végétaux après un séjour dans le sol relativement bref : une dizaine de jours en moyenne. Les plantes absorbent initialement très vite l'azote puis plus lentement, avant une certaine reprise (inflexion, fig. 5). Ceci peut être interprété comme le résultat de deux cinétiques d'oxydes à deux « offres » différenciées. En effet, les lombriciens excrètent des formes assimilables (ammoniaque, urée) directement sur le système racinaire (les galeries sont tapissées de racines au printemps). A cet échange quasi direct, succéderait la fraction, que l'on sait la plus importante [6] d'excrétats azotés lombriciens. Ceux-ci sont constitués de produits divers (mucopolysaccharides et protéines) [7] qui seraient dégradés par des microbes « mucolytiques » avant de devenir assimilables. Une riche microflore « protéolytique » a effectivement été observée dans les parois des galeries lombriciennes de cette même prairie [8]. On ne peut pas toutefois exclure un léger artefact dû à la réintroduction. Les lombriciens apportés en surface (sur les baes) colonisent d'abord l'horizon superficiel à densité racinaire élevée, avant d'occuper une galerie subverticale dont l'enracinement en radicelles assimilatrices n'est peut-être pas optimal aux tous premiers jours.

Hormis cet artefact (corrigible) possible, la nouvelle technique de co-marquage des lombriciens nous permet une véritable endoscopie fonctionnelle du sol sans en perturber les biostructures d'échanges et nous a permis de mettre en évidence, en conditions normales, une portion du cycle de l'azote. Cette portion du cycle de l'azote n'est pas négligeable : la structure du peuplement lombricien de cette prairie est bien connue [9] et permet, partir de l'aliquote étudiée ici, de constater que 26 % de l'azote assimilé par les plantes prairiales pendant l'expérience ont transité dans les adultes de N. longus. En extrapolant (à biomasses égales, fonction égale), cette propriété à l'ensemble des lombriciens (tous espèces et stades) de la prairie, c'est 82 % des assimilats azotés des végétaux qui auraient transités via les Vers de terre.

Références bibliographiques

M. B. B : Laboratoire de Zootechnologie de Sol,
C.E.P.E./C.N.R.S./I.N.R.A., B.P. n° 5051, 34033 Montpellier Cedex;