CONCENTRATIONS ET CROISSANCE DE LOMBRICIENS ET DE PLANTES DANS DES SOLS CONTAMINÉS OU NON PAR CD, CU, FE, PB ET ZN: INTERACTIONS PLANTE–SOL–LOMBRICIEN

ABDUL MOTALIB M. ABDUL RIDA
Laboratoire de Zoolécologie du Sol, CEFE, CNRS, 1919 Route de Mende, BP. 5051, 34033 Montpellier Cedex 1, France

(Accepted 5 March 1996)

Summary—Three microcosms have been prepared from soils which differ in their contents of five trace elements (Cd, Cu, Fe, Pb and Zn). All prepared soils were planted with rye grass, Loliun perenne L., and an earthworm Lumbricus terrestris L. was introduced in only half of them. The aim of this second part of the work is to study, on the one hand, the growth and concentration of trace elements in the shoots and roots of rye grass, and on the other hand, the interactions between the chemical extraction of soil trace elements and the biological concentration of these elements in earthworms and in the two vegetable parts of rye grass. The vegetable biomass of these two parts were increased with soil Cd, Cu, and the presence of earthworms, with the exception of the root biomass in 100% contaminated soils. The concentration of trace elements is more important in the roots than in the foliar parts. Generally, the presence of L. terrestris increased the concentration of trace elements in the two vegetable parts with the exception of that of Fe and Pb in the roots. The trace element contents of rye grass, in particular their roots, have been better correlated with that of soils than the earthworm tissue contents. The presence of earthworms increased the number of positive correlations between the trace element concentrations in the two vegetable parts of rye grass.

Resumé—Trois microcosmes ont été préparés à partir des sols contenant des teneurs variables en cinq éléments traces (Cd, Cu, Fe, Pb et Zn). Le ray-grass, Loliun perenne L., a été planté dans tous les sols tandis que les lombriciens, Lumbricus terrestris L., ont été introduits dans la moitié des sols préparés. L’objectif de la deuxième partie de ce travail consiste à étudier d’une part la croissance et la concentration des éléments traces dans les racines et la partie aérienne du ray-grass, et d’autre part l’interaction entre les éléments traces extrait chimiquement des sols et ceux concentrés biologiquement dans les lombriciens et les deux parties végétales de la plante. La biomasse végétale de ces dernières a augmenté avec la présence d’une part la contamination des sols et d’autre part la présence des lombriciens à l’exception des biomasses racinaires dans les sols à 100% de contamination. La concentration des éléments traces dans la partie racinaire est plus importante que celle de la partie aérienne. La présence des L. terrestris a augmenté en général les teneurs en éléments traces des deux parties végétales à l’exception de celle de Fe et de Pb dans les racines. Les teneurs en éléments traces de la plante, en particulier ses racines, ont été mieux corrélées avec celles des sols qu’avec les teneurs des tissus lombriciens. La présence de ces derniers a augmenté le nombre des corrélations positives entre les éléments traces concentrés dans les deux parties végétales du ray-grass. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION
Les plantes absorbent les éléments traces sous forme ionique, complexé ou sous forme de chélates. Ainsi, les éléments les plus disponibles pour les végétaux sont ceux de la solution de sol ou adsorbés sur les complexes argilo-organiques. Ceux fixés par les oxydes ou liés aux microorganismes le sont beaucoup moins (Kabata-Pendias et Pendias, 1986). Or, la présence de lombriciens peut être un facteur qui favorise la disponibilité des éléments traces pour les plantes. Il est bien connu que les lombriciens, avec la complexité des microorganismes, jouent un rôle très important dans la dégradation de la matière organique en libérant les éléments séquestrés. Ils participent aussi activement dans le recyclage et le transfert de certains éléments du sol vers les plantes tels que l’azote et le phosphore (Sharpley et al., 1979; Syers et al., 1979; Bouché et Ferrière, 1986). Il est probable que ce mécanisme de recyclage et de transfert des éléments peut être valable également pour les éléments traces.

La littérature scientifique montre des désaccords sur les modalités d’assimilation de certains éléments traces par les plantes. En effet, l’assimilation végétale peut être sélective en s’effectuant contre le gradient de concentration mais aussi passive par simple diffusion (Mengel et Kirby, 1978; Callot et al., 1982). L’efficacité de l’assimilation des éléments traces varie beaucoup. D’après Kabata-Pendias et Pendias (1986),
les bioaccumulations calculées pour différentes plantes dans des sols variés sont les suivantes:

Cd, B, Cs, Rb > Zn, Cu, Pb > Mn, Ni, Li > Fe

Certains de ces éléments, comme Cu, Fe, et Zn, sont nécessaires à faible teneur pour les fonctionnements biologiques telles que la respiration, la photosynthèse, la fixation et l’assimilation des autres éléments (N, S), l’activité enzymatique ou comme transporteurs d’électrons. D’autres comme le Pb et le Cd ne semblent pas être essentiels pour les organismes, ils sont plutôt considérés comme toxiques. Pour tolérer l’excès des éléments traces, les plantes ont adopté des mécanismes très variables (Antonovics et al., 1971; Foy et al., 1978) parmi lesquels:

- Absorption sélective des cations.
- Diminution de la perméabilité cellulaire.
- Stockage des éléments sous formes non solubles dans certains organes végétatifs (racines, feuilles et graine).
- Changement de métabolisme; augmentation de l’activité enzymatique pour diminuer ou augmenter l’antagonisme.
- Élimination des cations par le lessivage des feuilles ou émanation par les racines.

A côté de l’absorption racinaire, les plantes peuvent aussi absorber les éléments traces par les feuilles et puis les transporter vers d’autres organes végétatifs y compris les racines où l’excès des éléments traces peut être stocké (Mengel et Kirkby, 1978; Loué, 1986). Pour éviter cette contamination atmosphérique et dans le même temps travailler dans un milieu le plus proche de la nature, l’expérience a été réalisée en microcosmes dans une chambre climatisée en utilisant des sols contaminés naturellement.

Dans cette deuxième partie du travail, nous présentons et discutons les résultats concernant (1) la croissance et (2) les concentrations de cinq éléments traces (Cd, Cu, Fe, Pb et Zn) dans les parties végétales, aérienne et racinaire, du ray-grass. Sont discutées également, (3) les corrélations entre les concentrations des cinq éléments dans les plantes, les sols et les lombriciens.

MATERIEL ET METHODES

Caractéristiques des microcosmes

Les propriétés physico-chimiques des sols, les teneurs en éléments traces, la préparation des sols, les lombriciens, du ray-grass, les conditions du dispositif expérimental et les méthodes d’analyses de lombriciens et de sols ont été présentées en détail dans la première partie de ce travail (Abdul Rida, 1996). A partir de mélanges variés de sols non contaminés et contaminés naturellement, nous avons préparé trois sols variant par leur niveau de contamination en cinq éléments traces (Cd, Cu, Fe, Pb et Zn). Ces sols sont assez voisins au niveau de leurs caractères physico-chimiques. Les trois microcosmes préparés sont les suivants:

Niveau 0% = 100% de sol non contaminé
Niveau 50% = 50% de sol non contaminé
+ 50% de sol contaminé
Niveau 100% = 100% de sol contaminé

Les sols sont mis dans 90 bocaux. Chaque bocal a reçu 1 kg de terre humide et 12 plantules de ray-grass Loliun perenne L. Une semaine après, la moitié des bocaux a reçu un Lumbricus terrestris L. adulte. L’expérience a duré 84 jours dans une chambre climatisée en contrôlant l’humidité des sols, leur température et celle de l’atmosphère, et la photopériode.

Les mesures des éléments traces ont été effectuées après 7, 14, 28, 42, 56, 70 et 84 jours dans les sols, les lombriciens et les parties végétales, aérienne et racinaire, des plantes. Deux répétitions (deux bocaux) ont été analysées pour chaque type de traitement et par chaque date d’analyse. L’analyse de sol a été répétée deux fois pour chaque bocal.

Analyse des éléments traces dans les plantes

L’analyse a été faite séparément dans la partie aérienne et racinaire. Les parties aériennes du ray-grass ont été coupées aux ciseaux au ras du sol. Les parties racinaires ont été séparées du sol par un tri manuel, puis lavées à l’eau courante, rinçées à l’eau distillée et enfin égouttées sur papier filtre. Les deux parties ont été pesées à l’état frais puis séchées à l’étuve à 70°C pendant au moins cinq jours. Elles ont été repesées après séchage, puis broyées et minéralisées selon le mode opératoire suivant: dans un tube de minéralisation contenant 1 g de matière végétale sèche, on a ajouté 5 ml HNO₃ et l’ensemble est chauffé à 160°C pendant 5 h. Après refroidissement, 5 ml HCl et 5 ml HNO₃ sont alors ajoutés successivement. L’ensemble est à nouveau chauffé à 160°C pendant 5 h. Après refroidissement, la solution est ajustée à 100 ml avec de l’eau distillée. Le dosage des éléments traces a été réalisé, sur le surnageant après décantation d’une nuit, par Spectrométrie d’Absorption Atomique à flamme air-acétyle.

RESULTATS

Croissance du ray-grass

En général, la biomasse végétale sèche et fraîche du ray-grass augmente sensiblement avec la contamination des sols (Fig. 1). A la dernière mesure (84ème jours), la masse sèche est de 3,7 g dans les sols non contaminés et de 6,4 g dans les sols contaminés à 100%. La biomasse végétale de la partie aérienne est plus importante que celle de la partie racinaire dans tous les sols en présence ou en absence de lombriciens. Cependant, dans les dernières mesures, il y a un rapprochement entre les deux biomasses végétales, puis cela s’inverse dans les trois microcosmes. La présence des Lumbricus terrestris a légèrement augmenté les masses fraîches et sèches moyennes des parties aérienne et racinaire du
Ray-grass dans tous les sols à l’exception de celles des parties racinaires dans les sols à 100% de contamination (Tableau 1).

**Concentration des éléments traces dans le ray-grass**

Les éléments traces ont été concentrés en fonction de la partie végétale analysée, du niveau de contamination et de l’élément trace étudié (Tableau 2). D’une manière générale, la teneur pour tous les éléments traces a sensiblement augmenté avec la contamination des sols dans les deux parties végétales du ray-grass en présence ou en absence des lombriciens. Cependant, une exception a été constatée concernant la teneur en Cu et Fe de la partie végétale aérienne. La présence des lombriciens a souvent un effet positif sur la concentration des éléments traces dans les deux parties végétales à l’exception de la teneur en Fe et Pb de la partie racinaire du ray-grass.

**Interactions des éléments traces: plante, sol et lombricien**

Dans les sols où les lombriciens sont présents, les teneurs en éléments traces dans les deux parties végétales du ray-grass sont mieux liées avec celles extraites des sols au DTPA qu’avec celles concentrées dans les tissus des *Lumbricus terrestris* (Tableau 3). Peu de relations significatives sont apparues entre le ray-grass et *Lumbricus terrestris*, tandis qu’elles sont presque toutes significatives entre la plante et les sols à l’exception de Cu dans la partie aérienne et de Fe dans les deux parties végétales. En outre, les éléments traces concentrés dans la partie racinaire sont mieux liés que ceux de la partie aérienne du ray-grass avec les sols et les lombriciens.

**Tableau 1. Biomasses fraîches (H) et sèches (S) moyennes (en g) des parties végétales aériennes (A) et racinaires (R) du ray-grass en présence ou en absence des *L. terrestris* dans les trois types de microcosmes.**

<table>
<thead>
<tr>
<th>Niveau</th>
<th>A.H</th>
<th>A.S</th>
<th>R.H</th>
<th>R.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sans lombriciens</td>
<td>8,44</td>
<td>2,20</td>
<td>13,49</td>
<td>1,85</td>
</tr>
<tr>
<td>0%</td>
<td>11,17</td>
<td>2,77</td>
<td>16,05</td>
<td>2,42</td>
</tr>
<tr>
<td>100%</td>
<td>13,56</td>
<td>3,19</td>
<td>15,83</td>
<td>2,36</td>
</tr>
<tr>
<td>Avec lombriciens</td>
<td>9,31</td>
<td>2,36</td>
<td>13,75</td>
<td>1,92</td>
</tr>
<tr>
<td>0%</td>
<td>12,78</td>
<td>3,14</td>
<td>16,57</td>
<td>2,45</td>
</tr>
<tr>
<td>100%</td>
<td>14,09</td>
<td>3,29</td>
<td>15,54</td>
<td>2,33</td>
</tr>
</tbody>
</table>

**Tableau 2. Teneurs moyennes (mg kg⁻¹) en éléments traces des deux parties végétales, aérienne et racinaire du ray-grass en présence ou en absence de lombriciens.**

<table>
<thead>
<tr>
<th>Élément</th>
<th>Partie aérienne</th>
<th>Partie racinaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>Ab. 0,24</td>
<td>Pr. 0,27</td>
</tr>
<tr>
<td></td>
<td>1,84</td>
<td>3,28</td>
</tr>
<tr>
<td></td>
<td>4,47</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>1,25</td>
<td>22,36</td>
</tr>
<tr>
<td></td>
<td>21,9</td>
<td>36,84</td>
</tr>
<tr>
<td>Cu</td>
<td>Ab. 14,9</td>
<td>Pr. 15,4</td>
</tr>
<tr>
<td></td>
<td>14,3</td>
<td>16,3</td>
</tr>
<tr>
<td></td>
<td>15,8</td>
<td>62,3</td>
</tr>
<tr>
<td></td>
<td>71,7</td>
<td>103,8</td>
</tr>
<tr>
<td></td>
<td>97,3</td>
<td>143,3</td>
</tr>
<tr>
<td>Fe</td>
<td>Ab. 634</td>
<td>Pr. 743</td>
</tr>
<tr>
<td></td>
<td>542</td>
<td>794</td>
</tr>
<tr>
<td></td>
<td>569</td>
<td>2374</td>
</tr>
<tr>
<td></td>
<td>3140</td>
<td>3450</td>
</tr>
<tr>
<td></td>
<td>4066</td>
<td>3693</td>
</tr>
<tr>
<td>Pb</td>
<td>Ab. 0,64</td>
<td>Pr. 0,91</td>
</tr>
<tr>
<td></td>
<td>10,05</td>
<td>12,84</td>
</tr>
<tr>
<td></td>
<td>17,21</td>
<td>21,59</td>
</tr>
<tr>
<td></td>
<td>5,27</td>
<td>3,51</td>
</tr>
<tr>
<td></td>
<td>148,6</td>
<td>141,9</td>
</tr>
<tr>
<td></td>
<td>300,2</td>
<td>217,5</td>
</tr>
<tr>
<td>Zn</td>
<td>Ab. 43,1</td>
<td>Pr. 42,2</td>
</tr>
<tr>
<td></td>
<td>75,1</td>
<td>79,2</td>
</tr>
<tr>
<td></td>
<td>100,1</td>
<td>102,1</td>
</tr>
<tr>
<td></td>
<td>101,8</td>
<td>80,9</td>
</tr>
<tr>
<td></td>
<td>239,5</td>
<td>266,9</td>
</tr>
<tr>
<td></td>
<td>397,1</td>
<td>364,9</td>
</tr>
</tbody>
</table>

Les différences sont non significatives entre les teneurs des éléments traces en présence et en absence de lombriciens pour chaque niveau de contamination.
Tableau 3. Indices de corrélations entre les éléments traces concentrés dans les parties aériennes (A) et racinaires (R) du ray-grass, les lombriciens et les sols

<table>
<thead>
<tr>
<th>Él.</th>
<th>CdA</th>
<th>CdR</th>
<th>CuA</th>
<th>CuR</th>
<th>FeA</th>
<th>FeR</th>
<th>PbA</th>
<th>PbR</th>
<th>ZnA</th>
<th>ZnR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lombriciens</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>*</td>
<td>n.s</td>
<td>*</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>*</td>
<td>n.s</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>n.s</td>
</tr>
<tr>
<td>Sols</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significatif avec $P = 0.05$ (*); $P = 0.01$ (**); $P = 0.001$ (***), et non significatif (n.s).

**DISCUSSION**

*Evolution de la biomasse végétale du ray-grass*

Dans cette étude, la croissance du ray-grass a été soumis à l'influence de deux facteurs: la présence ou non de lombriciens et la contamination, plus ou moins importante, des sols par cinq éléments traces. Dans les trois microcosmes, la présence des lombriciens a, en général, faiblement augmenté la biomasse végétale moyenne de la partie aérienne et racinaire du ray-grass (Tableau 1). Ce constat rejoint celui de Stephens et al. (1994) qui ont noté une augmentation de la biomasse végétale du blé en présence d'Arthrospira-plana et A. trapezoides. Un autre travail de terrain a également montré une augmentation de 72% de la production fourragère après les 4 années qui ont suivi l'introduction d'une espèce anécique (Nicotiana atropurpurea) dans un pâturage (Stillwell, 1982). Cette augmentation est due probablement à une disponibilité plus importante des éléments biogènes (N, P, ...) dans les sols en présence des lombriciens (Edwards et Lofty, 1977; Lee, 1985). Ainsi, les lombriciens ont accéléré d'une part la décomposition de la matière organique et par conséquence la libération des éléments séquestrés par rapport à une activité microbienne isolée. D'autre part, les excréptions lombriciennes, cutanées et intestinales, sont riches en éléments nutritifs en particulier en azote. En effet, dans ces excréptions, l'azote est sous deux formes; une forme directement assimilable par les plantes (urée, ammoniacque, acide urique, allantoïne) et une autre nécessitant une dégradation microbienne préalable (mucopolysaccharides et protéines), notamment lorsque l'azote est un composant du mucus cutané (El Duweini et Ghabbour, 1971; Cortez et Bouché, 1987). Hamed et al. (1993) ont constaté que la présence de L. terestris favorise l'accumulation de l'azote dans le ray-grass. De même, l'étude de Stephens et al. (1994) a montré l'augmentation en N, Ca et K dans la partie foliaire de blé en présence de deux espèces lombriciennes. Il est donc très probable que le ray-grass a profité de cet azote disponible pour mieux croître en présence de lombriciens dans les microcosmes. De plus, l'azote disponible pour le ray-grass peut provenir directement des tissus lombriciens. En effet, nous avons constaté une décroissance de la biomasse lombricienne à partir du 10ème jour d'expérience (Abdul Rida, 1996). Cette perte de la biomasse augmente avec les teneurs des sols en éléments traces pour atteindre 69% à la dernière mesure dans le microcosme à 100% de contamination. Cette perte de biomasse lombricienne a été accompagnée par une augmentation de la biomasse végétale du ray-grass. Cela peut renforcer l'idée d'une absorption de l'azote lombricien par les plantes. Toutefois, dans les microcosmes à 100% de contamination, la biomasse végétale de la partie racinaire est moins importante en présence de lombriciens qu'en leur absence (Tableau 1). Il est possible que la biodégradation rapide de la matière organique native et rapportée aux microcosmes et la teneur importante des sols en éléments traces ont orienté le choix alimentaire de L. terestris vers la consommation d'une partie des racines vivantes du ray-grass. En effet, Cortez et Bouché (1992) ont déjà noté la possibilité de la consommation d'une partie du système racinaire vivant, notamment les apex terminaux de cette même espèce végétale, par la même espèce lombricienne.

Dans les trois microcosmes, la biomasse végétale racinaire a été plus importante que celle de la partie aérienne. Cette différence a diminué en cours d'expérience et même s'est inversée dans les dernières mesures. La présence des éléments traces a eu des effets très visibles sur la biomasse végétale. En effet, la biomasse de la partie aérienne et racinaire du ray-grass augmente sensiblement avec la contamination des sols. Cette augmentation est due probablement à la croissance de la charge végétale en éléments traces. Ainsi, le ray-grass, dans cette étude, a concentré des teneurs très élevées en éléments traces par rapport à la même espèce végétale dans des sols agricoles. En effet, d'après Thevenet (1989) la teneur élevée en Cu, Fe et Zn du ray-grass entier à la floraison est supérieure à 7, 60 et 20 mg kg⁻¹ respectivement, tandis que dans notre expérience le ray-grass, dans ses deux parties végétales, a concentré des teneurs encore plus fortes (Tableau 2).
L’augmentation de la biomasse végétale dans les sols contaminés peut être également un mécanisme de détoxication par dilution de la charge minérale en éléments traces dans une masse végétale plus importante et de ce fait diminution de la concentration de ces éléments par unité de masse.

Pour évaluer l’effet de ces teneurs élevées en éléments traces sur la biomasse végétale des parties aérienne et racinaire du ray-grass nous avons présenté au Tableau 4 les indices de corrélations. Ce tableau montre que la présence dans les plantes des teneurs élevées en Cu (dans les parties aérienne et racinaire), Fe (partie racinaire) et à moindre degré de Pb et de Zn (partie aérienne) ont un effet négatif sur la biomasse humide et sèche des deux parties végétales. La présence de lombri uis a accentué cet effet dans le cas de Cd et Zn (partie aérienne) et de Fe (partie racinaire). Toutefois, on a constaté dans la première partie de ce travail que la présence de *L. terrestris* n’a qu’un effet très faible sur la disponibilité de ces éléments mesurée au DTPA. Ces résultats supposent donc la possibilité d’un transfert direct des éléments traces des sols vers les plantes via les lombriciens.

**Teneur en éléments traces du ray-grass**

L’absorption des éléments traces par les plantes dépend d’une part des formes chimiques sous lesquelles les éléments traces se présentent dans le sol (Xian, 1989), et d’autre part des conditions physico-chimiques du milieu. La présence de lombricien peut influencer les deux facteurs cités précédemment et par conséquent modifier la disponibilité des éléments traces pour les plantes. Les actions des lombriciens sont liées à leur rôle principal dans la dégradation de la matière organique et à leur travail physique dans les sols qui accélère le phénomène d’oxydation, ainsi qu’à leur exécration cutanée et intestinale, à la formation des complexes organominéraux et de carbonate de calcium et enfin à leur possibilité de solubiliser une partie de la teneur totale des éléments traces des sols. Il ne faut pas, toutefois, négliger le rôle important de la rhizosphère et les exsudats racinaires solubles et insolubles produits par les plantes (Hodgson, 1963; Juste, 1988; Mench, 1990). Ces exsudats végétaux, comme d’ailleurs les excrétions lombriciennes, peuvent se lier aux éléments traces en modifiant ainsi leur disponibilité. De même, ils peuvent modifier le pH du sol qui se trouve au contact direct ou proche des racines et de ce fait influencer la disponibilité des éléments traces. En outre, la majorité des exsudats sont biodégradables et stimulent l’activité microbienne qui peut, soit rentrer en compétition avec la plante pour l’absorption de certains éléments, soit favoriser l’assimilation de certains d’entre eux en les maintenant en solution par la production de ligands organiques (Juste, 1988).

Nous avons constaté que d’une façon générale, les teneurs en cinq éléments étudiés des deux parties végétales augmentent avec celles des teneurs totales de microcosmes en présence ou non de lombriciens. Cela est très clair pour tous les éléments dans les racines et pour le Cd, le Pb et le Zn dans la partie aérienne du ray-grass. Notons que la quantité des éléments traces concentrés varie beaucoup selon l’élément étudié et la partie végétale analysée. Cette variation est due probablement au besoin biologique et à la régulation physiologique du ray-grass d’une part et à la compétition entre ces éléments d’autre part. En effet, dans tous les sols la partie racinaire du ray-grass, avec ou sans lombricien, contient beaucoup plus d’éléments traces que la partie aérienne.


Le Cd est l’élément le moins absorbé dans les deux parties végétales en présence ou en absence de *L. terrestris* (Tableau 2) bien que l’absorption de cet élément soit en général très importante par les plantes (Kabata-Pendias et Pendias, 1986). Or, l’interaction de Cd avec d’autres éléments tels le Ca, le Mn ou le Zn peut inhiber son absorption par la plante (Jarvis et al., 1976). En effet, le Ca est l’élément dominant, dans les trois sols étudiés, et de ce fait il peut jouer un rôle capital pour diminuer l’absorption du Cd. Le pH des sols joue aussi un rôle important vis-à-vis de l’absorption de Cd. Dans les sols basiques, le Cd devient moins mobile à cause de la formation de complexes ou de chélates (Kabata-Pendias et Pendias, 1986). Rappelons que dans notre

### Tableau 4. Indices de corrélations entre les biomasses végétales humides (H) ou sèches (S) et des teneurs en éléments traces des parties aériennes (A) et racinaires (R) du ray-grass

<table>
<thead>
<tr>
<th>Élé.</th>
<th>HA sans lombric</th>
<th>HR sans lombric</th>
<th>SR sans lombric</th>
<th>HA avec lombric</th>
<th>HR avec lombric</th>
<th>SR avec lombric</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdA</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
</tr>
<tr>
<td>CdR</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
</tr>
<tr>
<td>CuA</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>CuR</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>FeA</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>FeR</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
</tr>
<tr>
<td>PbA</td>
<td>n.s</td>
<td>*</td>
<td>*</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
</tr>
<tr>
<td>PbR</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
</tr>
<tr>
<td>ZnA</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
</tr>
<tr>
<td>ZnR</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
</tr>
</tbody>
</table>

Significat avec *P = 0.05* (*); *P = 0.01* (**); *P = 0.001* (***) et non significatif (n.s).
expérience le pH des sols est supérieur à 7 et de ce fait ne favorise pas la disponibilité de Cd.

Le cas du Cu est semblable à celui du Cd car son absorption par les plantes est en compétition avec celle de Zn (Mengel et Kirkby, 1978; Loué, 1986). Comme la teneur totale de Zn est plus importante que celle de Cu d'une part et qu'il y a la formation de complexes moins solubles entre le Cu et la matière organique d'autre part, le Zn a été mieux absorbé que le Cu par le ray-grass. De plus, le Cu est un élément absorbé activement par les plantes, c'est-à-dire que son absorption est contrôlée biologiquement selon le besoin physiologique. Pour cela, la teneur du ray-grass n'a pas dépassé 16 mg kg⁻¹ dans sa partie aérienne et 143 mg kg⁻¹ dans ses racines où l'excès de Cu est normalement stocké (Mengel et Kirkby, 1978). Enfin, les espèces végétales graminées, le ray-grass entre autres, sont en général pauvres en Cu (Perigaud, 1971).

Le Zn est bien concentré dans les deux parties végétales du ray-grass. Sa concentration dans la partie racinaire est environ 2 à 4 fois supérieure à celle de la partie aérienne. C'est le rapport le plus faible parmi les cinq éléments traces étudiés. Cette homogénéité relative de la distribution de Zn dans les deux parties végétales est due probablement à ses liaisons avec des molécules organiques à faible poids qui circulent avec le liquide de xylème (Kabata-Pendias et Pendias, 1986) en lui permettant d'être présent dans les deux parties végétales du ray-grass. Cela indique la bonne mobilité de Zn dans les plantes.

Le Fe est l'élément le mieux concentré dans les deux parties végétales du ray-grass. Son absorption a été probablement favorisée par deux mécanismes. D'une part les exsudats racinaires qui forme des chélates solubles et facilement absorbables par les plantes (Mengel et Kirkby, 1978) et d'autre part, la présence de l'ammonium. En effet, la présence de ce dernier dans les sols augmente l'absorption de Fe à l'opposé de la présence de nitrates (Sideris et Young, 1956). Or, les excréptions lombriciennes sont très riches en NH₄⁺ (Needham, 1957; Lee, 1985). L'ammonium provient également de la minéralisation de la matière organique ajoutée aux microcosmes. Cela peut expliquer la teneur importante en Fe dans le ray-grass. Toutefois, la présence des lombriciens a augmenté la teneur en Fe de la partie aérienne mais en même temps a diminué sa teneur dans la partie racinaire. D'après Loué (1986) les acides organiques peuvent maintenir le Fe soluble à l'intérieur des plantes et par conséquence favorisent leur transfert vers les différentes parties végétales. Il est donc probable que les excréptions lombriciennes favorisent la formation des complexes solubles et mobiles dans les plantes et de ce fait facilitent la concentration de cet élément dans la partie aérienne plutôt que dans la partie racinaire. De plus, la plante garde une grande partie de Fe sous forme de phosphoprotéine ferrique (la phytoferritine) dans les feuilles pour les besoins de la photosynthèse (Loué, 1986).

La présence des lombriciens a eu le même effet sur la concentration de Pb dans le ray-grass que celui constaté pour le Fe, c'est-à-dire l'augmentation de Pb dans la partie aérienne et sa diminution dans la partie racinaire. Cela peut indiquer un phénomène de synergie entre les deux éléments. Ce constat est bien illustré également par les corrélations positives entre le Fe dans les deux parties végétales et le Pb dans la partie aérienne (Tableau 5). Le même mécanisme peut également expliquer la concentration importante de Pb dans la partie aérienne par rapport à celle de la partie racinaire en présence de L. terrestris. Selon Nicolls et al. (1965), cités par Antonovics et al. (1971), l'adsorption du Pb par les plantes est constante quand la teneur du sol augmente. Ce phénomène s'arrête cependant à un certain seuil à partir duquel la teneur de la plante

<table>
<thead>
<tr>
<th>Sans lombriciens</th>
<th>CdA</th>
<th>CdR</th>
<th>CuA</th>
<th>CuR</th>
<th>FeA</th>
<th>FeR</th>
<th>PbA</th>
<th>PbR</th>
<th>ZnA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CuA</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CuR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeA</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeR</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbR</td>
<td>n.s</td>
<td>n.s</td>
<td>*</td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avec lombriciens</td>
<td>CdR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CuA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CuR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeA</td>
<td></td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbR</td>
<td></td>
<td></td>
<td></td>
<td>n.s</td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n.s</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significatif avec 0.05 (*); P = 0.01 (**); P = 0.001 (***), et non significatif (n.s).
devient incontrôlable et augmente de manière arbitraire. Nous avons constaté des oscillations importantes du Pb dans la partie racinaire, et cela en présence ou non de lombriciens, à partir d'une teneur totale du sol supérieure à 400 mg kg\(^{-1}\) indiquant probablement une absorption plus ou moins contrôlée.

L'ensemble de ces résultats indique que les racines jouent le rôle d'une barrière au passage des éléments traces vers la partie aérienne. En effet, les sols ont été la seule source de contamination dans les trois microcosmes étudiés et de ce fait les racines ont pu limiter le transfert des éléments traces vers la partie aérienne du ray-grass. D'après Mengel et Kirkby (1978), les éléments traces, comme le Cd et le Zn, sont adsorbés sur les sites racinaires d'échange. Le Pb se précipite dans les racines sous forme de pyrophosphate (forme inactive) le long de la paroi cellulaire. Une grande quantité du Cu est aussi liée aux sites négatifs d'échange de la substance pectique (groupe COO\(^{-}\)) des parois cellulaires du cortex racinaire. Ce mécanisme de fixation racinaire peut être destiné à protéger les plantes contre l'intoxication par les excès en éléments traces dans les sols contaminés. Interactions et comparaisons des éléments traces: plante, sol et lombricien

Beaucoup de travaux ont été réalisés pour étudier la concentration des éléments traces dans quelques espèces lombriciennes (Gish et Christensen, 1973; Ireland, 1983; Lee, 1985; Abdul Rida, 1992; Morgan et Morgan, 1992) tandis que peu de travaux ont été réalisés dans le but d'étudier les interactions entre la concentration des éléments traces dans les sols, les plantes et les lombriciens et le rôle de ces derniers dans le transfert des éléments traces dans les sols vers la végétation. Dans cette expérience, nous avons abordé ces interactions de deux façons: (1) analyse directe des éléments traces dans les trois compartiments (sols, plantes et lombriciens) et (2) une analyse statistique des données provenant de l'analyse précédente pour estimer le degré des liaisons (coefficients de corrélations) entre les éléments traces concentrés dans les trois compartiments.

L'analyse statistique, de la première partie de ce travail, a montré que les éléments traces concentrés dans les tissus lombriciens sont corréls positivement avec ceux des sols à l'exception de Cd et de Zn. Dans cette partie du travail, le Tableau 5 montre que la présence des lombriciens a augmenté le nombre de corrélations significatives entre les éléments concentrés dans les deux parties végétales du ray-grass par rapport aux mêmes plantes dans les sols sans lombricien. Ainsi, la présence de ces derniers a pu entraîner une synergie de concentration des éléments traces dans les plantes. En outre, le Tableau 3 indique que les quantités des éléments traces concentrées dans la partie aérienne et racinaire du ray-grass sont mieux corrélées avec celles des sols qu'avec les teneurs des tissus lombriciens. On note également que les éléments traces concentrés dans les racines sont mieux corrélés que les éléments de la partie aérienne avec les sols et les lombriciens. Ces corrélations indiquent, dans les conditions de notre expérience, que l'extraction chimique partielle des éléments traces des sols par DTPA présente, mieux que les teneurs lombriciennes, les quantités de ces éléments concentrés dans le ray-grass en particulier dans sa partie racinaire. Bien que l'extraction chimique des sols soit bien liée à la teneur biologique du ray-grass, il est très important de rappeler que les quantités des éléments traces extraites des sols au DTPA varient beaucoup de celles concentrées, aussi bien dans les deux parties végétales du ray-grass que dans les tissus lombriciens. En effet, l'extraction chimique partielle est sélective, c'est-à-dire elle agit préférentiellement sur certaines formes chimiques selon l'agent chimique utilisé. A l'inverse, les organismes vivants (plante ou lombricien) contrôlent physiologiquement leur absorption au moins pour les éléments nécessaires.

En effet, les racines du ray-grass ont concentré les teneurs les plus importantes en quatre éléments (Cd, Cu, Fe et Pb) parmi les cinq éléments traces étudiés dans les sols contaminés à 50% et 100%. Par contre, ce sont les lombriciens qui ont concentré la teneur la plus importante du cinquième élément (Zn) et cela dans les trois microcosmes. Les teneurs les plus faibles en éléments traces ont été partagées entre l'extraction chimique de sols par DTPA et la partie aérienne du ray-grass. Cette variabilité des teneurs montre, d'une part la différence importante entre les quantités des éléments traces extraites chimiquement et celles concentrées biologiquement dans le ray-grass et L. terrestris, et d'autre part, la difficulté de choisir des indicateurs biologiques pour étudier la contamination des sols. Toutefois, les lombriciens possèdent des propriétés très avantageuses qui leur permettent d'être des bons indicateurs biologiques de leurs milieux (Abdul Rida et Bouché, 1994, 1995).

Remerciements

L'auteur remercie tout particulièrement Messieurs K. E. Lee, M. B. Bouché et J. Cortez pour les critiques qu'ils ont portées lors de la mise au point du manuscrit.

REFERENCES


