THE TRANSDISCIPLINARY AND TRANSLINGUISTIC MANAGEMENT OF THE
BIODIVERSITY: AN APPLICATION TO EARTHWORMS

M.B. Bouché, J.E. Klein, J.P. Qiu & P. Soto

Laboratoire de Zooécologie du Sol, INRA/CNRS, CEFE, 1919, route de Mende, BP5051 F-
34293 Montpellier, France

One of the major drawbacks in biology and ecology is the lack of true access to know-
ledge elements gathered by scientists. Classical publications, even registered by key
words and accessible by Internet, are inefficient. Only 1 to 2% of the knowledge ele-
ments are accessible.

All the biological and ecological knowledge is related necessarily to taxa. The opportunity
to describe taxa following international rules paves the way to use modern means allowing
automatic translations and direct access to facts. Using three complementary means:
Integrology, Informatics (hypermedia) and Internet every biological or ecological facts could
be today accessible and at least the descriptions are understandable.

This paper deals with data proper to earthworm morphological features. It demonstrates our
ability for every organisms (i) to make exhaustive descriptions, (ii) to standardize the termino-
logy, (iii) to describe in an automatically translated manner (e.g. to describe in French and to
read in Chinese pictographs) and (iv) to follow the international nomenclature rules with a fle-
xible management of synonyms, homonyms, vernacular names....

This is made easily by (i) the classical earthworm description using any available character-
istics (i.e. at atomic, molecular, histological or individual scales), (ii) the relations of each
Datum, initial and controlled (Dic, i.e. directly observed or measured) of this composition of
each individual to space, time, protocol of analysis and the observer (who is registering and
for who?), (iii) following these five 'referencers' of relations (composition, time, observer,
protocol, space) every initial datum (Dic) from ecology, environmental studies, agronomy,...
could be related to any individual, (iv) the use of a normalized explained terminology allows
the codification of each term-meaning from any language and conversely this code gives
access to each tabulated language, (v) hypermedia systems allow to link all data together to
access to each term-meaning and to get any explanation, figure or video connecting to them.

The result is a biodiversity knowledge management with a conservative system of holotypes
and original printed descriptions and a dynamic access to all knowledge (incl. additions)
and interpretations of facts. About 300 taxa of Lumbricoidea are now available in this way.
Among them 108 are new to science, doubling the Spanish fauna. Reasons for these disco-
veries are briefly given.