PRODUCTION ET FLUX D'ENERGIE DES LOMBRICS
DANS LES SITES DU P.B.I. : Pin au Haras (Borculo), etc...

M. BOUCHE

I - Introduction

Les études P.B.I. ont été l'occasion de mettre en place une méthodologie dans le but de permettre :
1° une estimation des populations,
2° une estimation des divers rôles de ces populations,
3° une utilisation logique de ces connaissances dans diverses circonstances (milieux équilibrés, "naturels", agricoles, pollués) à des fins fondamentales ou appliquées (agriculture, aménagement, etc...).

- Matériel et méthodes

2.1 - Méthodes

L'ensemble des études P.B.I. s'appuie sur l'analyse intensive d'une station prairiale (Citeaux en Côte d'Or) où des études sur les populations (niveau, variation, activité, démographie), sur leurs rôles (pédogénétique, microbiologique, etc...) ont été conduites, puis intégrées dans un modèle conceptuel et actuellement partiellement simulé : REAL (BOUCHE et KRETZSCHMAR, sous presse a); les autres stations, forestières ou prairiales, étant l'objet d'études moins complètes.
Ces travaux ont nécessité la mise en place de méthodes de capture de données, de gestion-prétraitement et de traitement des informations au niveau de chaque station et pour chaque type d’informations. Les transferts d’informations de station à station font l’objet d’une méthodologie critique et d’une thésaurisation systématique en raison du coût et de la rareté des informations valides. Il est hors de propos de donner ici, même sommairement, cet ensemble méthodologique et le lecteur devra se reporter aux articles suivants :

1° Méthodes de capture des lombriciens in situ (BOUCHE 1969a,b; BOUCHE, 1972b,c); codification des méthodes (BOUCHE, 1975b); mesure de l’activité in situ (BOUCHE, 1975c), de l’activité de surface (BOUCHE, 1976b); transformations pondérales (KRETZSCHMAR, sous presse a); gestion et prétraitement des données (BOUCHE et GARDNER, en préparation, a).

4° Modélisation des données intrasstationnelles ; pour la prairie : GOUNOT et BOUCHE (1974), pour les lombriciens (BOUCHE et KRETZSCHMAR, sous presse a), pour le transit intestinal (JOANNES et KRETZSCHMAR, en préparation).

5° Interpolations interstationnelles : principes dans BOUCHE (1975 a) ; catégories écologiques dans BOUCHE (1971, sous presse, a).

Certains analyses concernant les paramètres métaboliques (assimilation, respiration, excrétion) ont été différées en raison de l’absence de méthodes écologiques objectives (BOUCHE, sous presse b). D’une façon générale, la possibilité de prendre en compte un nombre croissant de paramètres écologiquement mesurés par un nombre croissant de données et l’interaction de ces multiples paramètres obligent à des calculs provisoires.

2.2. - Les Stations prairiales

Deux stations prairiales sont étudiées dans le cadre du P.B.I.

France :
STATION P.B.I. - Côteaux, St Nicolas les Côteaux, Côte d'or; sol limoneux, lessivé à pseudogley à pH voisin de la neutralité ; la prairie à fauche et pâturage est un Lolio-cynosuretum, homogène, à 1,25 U.G.B. (Unité Gros Bétail) de production potentielle et ayant une valeur pastorale de 65% (BOUCHE, 1976b). Deux études approfondies seront publiées ultérieurement.

2.3 - Les échantillons

Les deux échantillons, celui de Côteaux et celui de Borculo, ont été constitués de façon différente et résumés dans le tableau I. Les prélèvements b160 (bèche-lavage jusqu'à 60 cm) ont été subdivisés en 3 échantillons horizontaux de 20 cm de profondeur ; les animaux issus de bm7-fo (tri manuel à 7 cm suivi de l'extraction au formol) ont été regroupés en un seul prélèvement bm7-fo, mais dans certains cas il est néanmoins possible de distinguer les deux origines (bm7 et fo). Ici, l'analyse portera toujours sur l'ensemble bm7-fo. Les animaux ainsi collectés ont été individuellement pesés et identifiés (taxon le plus précis, stade, anomalies).
Les faunes de Cîteaux et de Borculo sont présentées au tableau II qui donne également les noms scientifiques complets et leurs abréviations. Seules, ces abréviations seront utilisées dans le texte. Pour lire ce tableau, il faut tenir compte de l'interprétation du nombre de larves ou/et de cocons non déterminés en raison de l'existence d'espèces identiques à ces stades. Il faut enfin savoir que ces totaux comportent un dénombrement de cocons à Cîteaux, alors que les captures de Borculo n'ont jamais fourni un seul cocon.

3.1. - Adéquation faunes-milieux

La présence, l'abondance, la biomasse d'une espèce de lombriciens dans un milieu équilibré ne sont pas des phénomènes fortuits mais traduisent:

1° l'histoire de la faune dont la mise en place, c'est-à-dire le temps d'ajustement milieu/faune, est plus ou moins ancienne;

2° l'ajustement plus ou moins bon des exigences de l'espèce vis-à-vis de ce milieu;

3° l'intercompétition entre cette espèce et les autres détritiphages (nous avons montré que cette intercompétition avait essentiellement lieu entre lombriciens : BOUCHE, 1972a).

Pour l'histoire, nous avons pu reconstituer, sur plusieurs millions d'années, les principales zones de colonisations des lombriciens (BOUCHE, 1972a). En ce qui concerne l'ajustement des espèces au milieu, nous connaissons leur optimum et leur sténocité vis-à-vis des pH, C, N, rapport C/N, concentration en carbonate et des indices d'hygrophilie et de vie subaquatique (BOUCHE, 1972a). Pour le jugement de l'intercompétitivité, il est possible de situer les espèces dans le cadre de trois stratégies évolutives principales (BOUCHE, sous presse, 1971).

L'interprétation doit à la fois tenir compte de la présence des espèces et de leur importance relative.
Les faunes de Côteaux et de Borculo se sont toutes deux mises en place après la dernière grande glaciation et sont constituées des quelques rares espèces bonnes migratrices qui ont recolonisé le milieu et le nord de l'Europe. Toutefois, Borculo a reçu des espèces plus occidentales : *N. giardi*, *L. festivus*, *D. mammalis*, espèces très rares dans l'est de la France ; cette dernière étant cependant présente à Côteaux.

Les espèces, par leur présence, traduisent trois traits du milieu : son organicité, c'est-à-dire sa tendance à accumuler plus ou moins de matière organique, son acidoïdité et son hygrométrie.

L'organicité est soulignée par l'importance de la catégorie écologique des épigés ; Côteaux ne possède qu'une forme épigée, *L. castaneus*, représentant 3,3% de la biomasse et dont l'activité se localise uniquement dans les bouses de vaches. Une forme épianécique, *L. terrestris* n'a en fait qu'une fonction anécique en prairie. À Borculo, les épigés sont diversifiés : *L. castaneus*, *L. disjunctus*, *L. rubellus* (4,3% de la biomasse) ; les espèces épianéciques (*L. festivus*) et épiendogèses (*N. caliginosus*, *E. tetraedra*, *A. chlorotica*) montrent une activité biologique concentrée dans les premiers centimètres de sol (24,7% de la biomasse). Les formes proprement endogèses (*A. icterica*, *A. rosea*, *I. anatomicus*, *N. tuberculatus*) ont une importance comparable à Borculo (18,5%) et à Côteaux (13,1%). En fait, la différence la plus marquée provient d'une diminution relative de la biomasse des anéciques, consommateurs et enfouisseurs de litière qui ne représentent que 45,7% de la biomasse à Borculo (*N. giardi*) contre 81,2% à Côteaux (*N. longus*, *N. nocturnus*). Comparativement à Côteaux, il y a donc à Borculo une tendance à l'accumulation de matière organique en surface due à la relative faiblesse des anéciques laissant place à une faune épigée ou épiendogée relativement importante et à une vie endogée surfeuillée développée.

Cette organicité "élévée" s'accompagne normalement d'une acidification superficielle ; de fait, 3 espèces de Borculo ont leur pH optimal inférieur à 6 sur l'ensemble de la France : *N. tuberculatus*, *L. disjunctus*, et *L. rubellus*, alors que toutes les espèces cisterciennes sont neutrophiles.

Enfin, Borculo se caractérise par une faune hygrophile ; cette hygrophile est indiquée par *L. disjunctus*, *L. rubellus*, *L. terrestris*, *L. festivus* mais surtout par *A. chlorotica* et par l'amphibie *E. tetraedra*.

Dans cette discussion, je n'ai pas tenu compte de l'unique *Dendrobaena octaedra* (acrophiile épigé) et des trois *Naplotaxa gordicidae* (hypoenogèses de la nappe phrénétique) observés à Côteaux. La première capture
(sur plus de 68,000 individus) est évidemment accidentelle et d'\textit{Naphtaxis} traduit des prélèvements profonds (\textit{en déssus de} - 20 cm en période humide), prélèvements dont nous ne disposons pas à Borculo. \textit{Dendrobaena mammalis} est incontestablement une espèce hygrophile, mais possède des aptitudes de vie en commensal avec des formes anéciques qui lui permettent l'accès à des couches fraîches profondes et le protection de leur mucus ; son interprétation est assurément complexe, délicate et encore insuffisamment documentée.

En résumé, les faunes sont historiquement contemporaines ; la prairie de Borculo apparaît comme plus humide, plus organique et donne des signes d'acidification. Ces observations se retrouvent effectivement dans les descriptions pédologiques de \textit{Masclet} et \textit{Duval} (in \textit{Ricou}, 1972) et de \textit{Bouche} (\textit{in litt.}). Le climat généralement océanique et l'hygrométrie plus étalée à Borculo (\textit{Legomé}, in \textit{Ricou} 1973) qu'à Côteaux favorisent le maintien d'une activité superficielle. A Côteaux, un climat froid l'hiver et sec l'été (\textit{Bouche}, 1976 b) convient aux anéciques vrais qui possèdent une diapause estivale et qui peuvent s'abriter profondément. A cet égard, \textit{Lriestris}, épianécique sans diapause, n'est confiné à Côteaux que dans une faible portion de la station où la nappe phréatique reste constamment assez proche de la surface. De ce fait, les coupures entre épigés, anéciques et endogés sont beaucoup plus clairement tranchées à Côteaux qu'à Borculo. Dans les deux cas, il n'y a pas de disparité entre la faune et son milieu.

3.2. - Rythme d'activité et distribution verticale

Les lombriciens ont un rythme d'activité et une distribution verticale dépendant largement des facteurs climatiques auxquels s'ajustent les démographie et mode de vie (\textit{Bouche}, sous presse). Les méthodes de capture ne sont pas indépendantes de cette distribution puisque celle au formol ne porte que sur une fraction des formes actives et que les méthodes par bêchage n'explorent qu'une portion du profil occupé par la faune. C'est pourquoi il convient de connaître ces rythmes et mouvements verticaux avant d'interpréter les densités et les biomasses et, réciproquement, d'utiliser ces distorsions de représentativité pour mesurer l'activité. Nous distinguons les niveaux : 0 = au-dessus du sol, 0 - 20 cm, 20-40 cm et 40-60 cm. Les résultats relatifs aux dénombrements totaux des individus capturés à Côteaux par pots-piège par la méthode b160 globalement et par strate, nous permettent de reconnaître le comportement des principales catégories écologiques (tableau III). Les divers pourcentages sont exprimés par rapport
aux postembryons (larves, subadultes et adultes) et ne tiennent pas compte des cocons. Les épigés sont capturés, pour l'essentiel, dans la couche superficielle 0-20 cm (94,8%) et possèdent une nette activité sur le sol ; ils y apparaissent 4,1 fois plus que leur véritable fréquence. Ces animaux possèdent un haut taux de reproduction puisqu'il y a en moyenne 2,2 cocons pour 1 postembryon présent ; ce qui souligne la pression des prédateurs sur ces animaux exposés. Les anéciques sont des vers de grande taille, explorant le profil relativement profondément ; 26% d'entre eux n'ont pas été capturés en surface. Mais ces animaux remontent la nuit et consomment des feuilles ; leur activité sur le sol n'est pas médiocre. Ils y apparaissent à 0,7 fois leur fréquence réelle, c'est-à-dire à une fréquence identique à celle qu'ils ont dans l'horizon 0-20 cm. Leur taux de reproduction reste élevé : 0,7 cocons par postembryon. Néanmoins, N.longus s'avère être beaucoup plus typique à cet égard que N.nocturnus qui vit plus près de la surface et qui a une activité superficielle plus élevée. N.giardi de Borculo possède probablement un comportement identique ou plus accusé que celui de N.longus.

Les endogés se présentent sous des aspects divers. La forme typique, géophage, qu'est A.aicterica, vit relativement en profondeur (25% au-dessous de 20 cm) ; elle est rarement active sur le sol où sa représentation relative n'est plus que 0,17 fois son peuplement réel. On observe en moyenne 0,3 cocon par adulte. Vie profonde, faible activité superficielle, faible renouvellement (prédatisme) sont caractéristiques de cet endogé vrai. Arosca est à Cîteaux une forme rhizophage, vivant au niveau des racines (84,4% dans le niveau 0-20 cm). Il y a 1,4 coton par adulte. Dans l'ensemble, les endogés de Cîteaux présentent 0,2 cocon par postembryon, taux faible mais diversifié. N.caliginosus est un épidogé très superficiel ayant aussi des caractères d'anéciques. Cette forme, intermédiaire entre les trois groupes, possède une forte activité superficielle (4,4 fois plus fréquente en surface que sa représentation réelle) à laquelle est lié un taux élevé de reproduction (1,23 cocon par postembryon ou 6,4 par adulte).

Tous ces traits se retrouvent à Borculo où le complexe N.caliginosus A.chlororictica et A. anatomicus joue globalement le rôle de N.caliginosus et Arosca à Cîteaux, et où A.giardi joue celui des N anéciques de Cîteaux.

Mais ces distributions verticales moyennes, liées aux fonctions, ne sont pas constantes au cours de l'année. Le froid et la sécheresse entraînent les migrations en profondeur, des léthargies et des "coconisations" (résistance sous forme de cocon), tandis que les périodes favorables (humides ou/et chaudes) entraînent des migrations vers la surface.
Typiquement, les épipés s’enkystent, les endogés rentrent en quiescence et les anéciques en diapausse lorsque les conditions sont défavorables (BOUCHÉ, sous presse a). La quiescence est un phénomène lié aux conditions du milieu, donc levé par ce dernier; diapausse et coconisation nécessitent par contre un certain délai. Les endogés conservent pendant la période estivale une activité arrêtée seulement lorsque le sol devient trop sec, alors qu'anéciques et épipés, ne peuvent se nourrir à la surface d'une litière alors trop sèche "disparaissent" fonctionnellement. L'indice Mi d'activité a pu être calculé et présenté (BOUCHÉ, sous presse) en relation avec ces modes de vie. De même, d'une façon générale, l'activité biologique des lombriciens est beaucoup plus faible en été à Côteaux qu'à Borculo; mais ces phénomènes sont compensés par une activité automnale et printanière proportionnellement plus grande, de sorte que, en moyenne annuelle, les deux peuplements présentent un bilan d'activité quasi identique (0,44 à Côteaux pour 0,48 à Borculo) (BOUCHÉ, 1975c). Cette consternation permet de conclure qu'à biomasses égales et à catégories équivalentes le rôle des lombriciens dans les deux stations est quasi identique.

3.3. Fonctions et bilan provisoire

Première zoomasse des milieux prairiaux, les lombriciens y remplissent de nombreux rôles. Leur importance est probablement comparable à celle des microorganismes.

La quantification de ces fonctions se heurte à la pauvreté des recherches en quantité et, souvent, en qualité.

J'ai souligné les deux difficultés dominantes de ces bilans : la non relation des mesures avec le milieu d'étude (critère de localisation non satisfait : paraécologie), et l'adoption de concepts intellectuels réductionnistes (par exemple : réduisant le rôle des lombriciens à un "bilan" métabolique ×BOUCHÉ, sous presse b). Echapper à ces deux limitations suppose un développement organisé des recherches, avec de nouvelles techniques qui n'ont pu être mises en œuvre pendant la période du P.B.I. Les études ont porté, à Borculo comme à Côteaux, exclusivement sur des approches écologiques, là où elles étaient possibles. Un modèle synthétique est en cours d'élaboration (BOUCHÉ et KRETZSCHMAR, sous presse) mais nécessitera encore plusieurs années pour aboutir à un usage opérationnel.
En attendant, nous pouvons :

1°) évaluer le niveau des populations qui, exprimée en biomasse, donne une idée approximative de l'importance fonctionnelle des catégories écologiques ;

2°) estimer grossièrement la masse de tissus produite, les dynamiques de populations étant connues, mais non leur démographie (en cours d'analyse) ; les autres données, excrétion, respiration, donc nécration et émanation, sont extrêmement approximative (paraécologique) ;

3°) établir les ordres de grandeur du rôle mécanique ;

4°) estimer quelques fonctions microbiennes ;

L'esquisse d'un bilan au niveau de l'écosystème ne peut être en conséquence que très approximatif et incomplet.

3.3.1 - Biomasses

Les biomasses ont été mesurées en poids plein, fixé au formol (ppfo), puis transformées par ordinateur (pour Cîteaux) en poids frais, tube digestif vide (pvhc).

Les données de Borculo ont été obtenues par une méthode très proche du prélèvement au formol ; le tri manuel des 7 premiers centimètres a donné des individus qui avaient une forte probabilité d'être extraits au formol en raison de leur position proche de la surface.

Le tri manuel de sol et la collecte manuelle à la surface sont également très similaires, mais se sont avérés incapables de fournir des cocons et très sous-estimants pour les petits vers.

Nous utiliserons ici les coefficients de transformation Ξ calculés sur le peuplement de Cîteaux par catégories écologiques ayant des comportements voisins. Ces coefficients relient les données pondérales, observées, totales, estimées au mètre carré, mesurées par la méthode au formol (1,2) à la méthode "absolue" b_{160} (coefficient pfo $1,2 \Xi pbl_{60}$; tableau IV).

Toutefois, à Borculo, les Ξ utilisés sont légèrement modifiés pour tenir compte du tri manuel, néanmoins beaucoup plus efficace pour les épiendogés (non lucifuges) et les endogés (lucifuges).
A l'inverse, N. giardi est très certainement plus "anécique" que N. longus qui l'est lui-même plus que N. nocturnus. L. terrestris a été admis comme similaire pondéralement de L. castaneus. Ces coefficients de transformation appliqués à Borculo, pbm_γ-fo Z pc, fondés sur les données de Cîteaux, introduisent ipso facto le poids des cocons (environ 3 % de la biomasse pvs).

A Cîteaux, les poids ont été eux-même calculés en introduisant les coefficients logarithmiques tenant compte des espèces, stades et poids individuels (Kretzschmar, sous presse). A Borculo, nous avons admis qu'en général la perte par contraction due à la fixation est de 8% (ppfo τp ph = 1,08), que le poids de l'endosperme est égal à 17,5% de celui du poids frais (pph pvh = 0,825) et que le contenu tissulaire en eau est de 86% (pvh τp pvs = 0,14). Nous avons donc uniformément appliqué ppfo τp pvsc = 1,08 X 0,825 X 0,14 = 0,125. Ces bases de calcul sont données dans BOUCHE, 1976a.

En définitive, le tableau TV donne les diverses biomasses observées et calculées à partir des données de Borculo et de Cîteaux. Les deux prairies possèdent une biomasse voisine : 23,1 g pvs/m2 (1,65 t pvh/ha) et 25,9 g pvs/m2 (1,85 t pvh/ha) respectivement, mais les fonctions anéciques et endogènes notamment y sont diversement représentées (% de la biomasse, tableau IV).

3.3.2 - Fonctions métaboliques

L'évaluation de la production de tissus morts par cadavres, amputats et enveloppes de cocons suppose la connaissance de la dynamique des populations. Nous n'en avons présenté que par observation des dynamiques qu'une grossière.

Nous observons deux générations par an pour L. castaneus, N. caliginosus et probablement A. chlorotica et A. anatomaticus. Pour les anéciques la durée de vie excède assurément une année et la reproduction est marquée par une éclosion massive peu avant l'été. Pour les endogènes, A.icterica présente une dynamique probablement proche de celle des anéciques, tandis que celle de A. rosea se rapproche de celle de L. castaneus.

Dans l'attente de pouvoir disposer du traitement démographique de nos informations, j'ai adopté systématiquement des hypothèses-bases (notamment un rapport émanation/biomasse = 1), alors qu'il est probablement proche de 3 ou plus) dans une première estimation (BOUCHE, sous presse c) que je reprends ici.
De même, les autres paramètres s'appuient sur des données paraécologiques (respiration au Warburg, excrétion en entonnoir, etc...) dont nous n'avons aucune raison de les considérer comme valables pour les prairies de Borculo et de Cîteaux. Ces données sont par ailleurs établies pour des animaux supposés "au repos" et négligent bien des effets telle la diapause.

Je présente au tableau V les coefficients acceptés pour les calculs des divers paramètres liés au métabolisme des peuplements de Borculo et de Cîteaux ; étant donné les approximations en cause, des corrections en fonction de la température et par classes de poids sont superfétatoires et scientifiquement ostensiblement. Les coefficients peuvent s'appliquer de façon identique aux biomasses des deux peuplements car nous avons montré que l'index d'activité moyen annuel Si des peuplements de Cîteaux (mesuré avec fo) était de 0,44 et celui de Borculo (mesuré avec bm7 - fo, et qui est légèrement "surestimé") de 0,48 (SOUCHE, 1975 c).

Nous appelons assimilation (A) ce qui reste dans le compartiment vivant "lombricien", émanation (E) ce qui en sort, production (P) l'accroissement du compartiment lombricien (accroissement de biomasse). L'émanation se décompose en échanges gazeux et (de "respiration") (R), en excrétion (Ex) de diverses molécules (mucus, urée, ammoniaque, CO₃Ca, etc...) et en élimination (E1) de tissus (cadavres, amputats, enveloppes de cocons(E = E1 + Ex + R ; à l'équilibre E = A, E = 0.)La respiration est calculée à partir de données para-écologiques "au repos"; les excrétions le sont à partir de données aussi approximatives "au laboratoire". Nous donnerons nos sources dans un document ultérieur. Pour des raisons de simplification, le calcul énergétique étant établi par un coefficient oxy calorimétrique, l'excrétion CO₃Ca est considérée comme énergétiquement nulle.

Ces valeurs ont été appliquées aux peuplements de Borculo et de Cîteaux (tableau VI) dont les principaux flux métaboliques sont ainsi estimés. Les erreurs sur l'élaboration sont de une ou deux grandeurs, sur l'excrétion et la respiration de plusieurs ordres de grandeurs, de sorte que ces bilans ont surtout un objectif conventionnel.

3.3.3 - Rôle pédogénétique

Le rôle pédogénétique est globalement mieux connu. La population de Cîteaux développe un réseau de galeries de plus de 2 cm de diamètre,d'au moins 4,5 l de volume et de surface développée 5 m²/m² de surface. Le réseau réel est probablement double.
La production de fèces est en cours d'études in situ (travaux de KRAKOWSCHMAR) et permet une estimation temporaire présentée au tableau VII. Le poids de l'endentère a été obtenu par : Pe = 0,175 pph = 1,515 pf = 1 ps/ Bps = 50% du pvs. Celui de l'endentère des animaux de Borculo a été estimé à partir de ces bases.

La production de turricules a été estimée à Cîteaux mais est difficilement extrapolable à Borculo, car elle dépend du tassement. En outre, des espèces peuvent se substituer à d'autres pour cette fonction si les anéciques sont insuffisants, ce qui pourrait être le cas à Borculo.

En conclusion, 300 t/ha à Cîteaux et 350 t/ha à Borculo de terre au moins traversent annuellement les tubes digestifs. En fait nos recherches améliorent les pré-cisions et montrent constamment que ces estimations sont par défaut. Les valeurs réelles pourraient être doubles.

3.3.4 - Rôle microbiologique

Nous avons montré que la microflore était largement stimulée par les structures et les mouvements entraînés par les lombriciens; il est beaucoup trop tôt pour connaître quantitativement cette influence qui a pu être illustrée pour la décomposition (50% du total), pour l'humification, la fixation d'azote (au moins 50% du total). Les lombriciens contribuent ainsi à modifier les flux d'azote et accélèrent les processus de décomposition-humification de façon très sensible.
BIBLIOGRAPHIE

BOUCHE, M.B., 1969b - Comparaison critique de méthodes d'évaluation des populations de lombricidés. Pedobiologia, 9, 1/2, 26-34.

BOUCHE, M.B., sous presse c - Main earthworm functions : comparison between Europe and North America. C.R. Vth conf. microcommunities, Syracuse, N.Y., USA (oct.75)

BOUCHE, M.B. et R.H. GARDNER, en préparation - Fonction des lombriciens. VII. méthodologique bias on earthworm estimates.

KRETZSCMAR, A., en préparation - Quantifications écologiques des galeries de lombriciens. Technique et premières estimations.

<table>
<thead>
<tr>
<th>Stations</th>
<th>Techniques</th>
<th>Prélevats</th>
<th>Nombre de prélevats par date</th>
<th>Nombre de dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>surface dm²</td>
<td>profondeur cm</td>
<td>volume dm³</td>
</tr>
<tr>
<td>C</td>
<td>fo</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>fo</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>fo-b120</td>
<td>6,25</td>
<td>0 à 20</td>
<td>12,5</td>
</tr>
<tr>
<td>C</td>
<td>fo-b120</td>
<td>6,25</td>
<td>0 à 20</td>
<td>12,5</td>
</tr>
<tr>
<td>C</td>
<td>fo-b120</td>
<td>10,00</td>
<td>0 à 20</td>
<td>20,0</td>
</tr>
<tr>
<td>C</td>
<td>bl120</td>
<td>25</td>
<td>0 à 20</td>
<td>50,0</td>
</tr>
<tr>
<td>C</td>
<td>bl20-40</td>
<td>12,5</td>
<td>20 à 40</td>
<td>25,0</td>
</tr>
<tr>
<td>C</td>
<td>bl40-60</td>
<td>12,5</td>
<td>40 à 60</td>
<td>25,0</td>
</tr>
<tr>
<td>C</td>
<td>bl60</td>
<td>6,25</td>
<td>0 à 60</td>
<td>37,5</td>
</tr>
<tr>
<td>C</td>
<td>bl60</td>
<td>10,00</td>
<td>0 à 60</td>
<td>60,0</td>
</tr>
<tr>
<td>B</td>
<td>bmp-fo</td>
<td>10,00</td>
<td>0 à 7</td>
<td>7,0</td>
</tr>
<tr>
<td>C</td>
<td>pots-plège</td>
<td>10,00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

tableau 1 Mode de collecte des échantillons à Borculo (B) et à Citeaux (C). Les techniques sont celles de l'extraction éthologique au formol (fo), à la bêche suivie du lavage (bl) ou du tri manuel (bm). Chaque échantillon est constitué d'une série de prélevats de surfaces et de profondeurs variables et de répétitions à des dates variables (nombre par date).
<table>
<thead>
<tr>
<th>Nom</th>
<th>Borculo</th>
<th>Côteaux</th>
<th>Abréviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. caliginosus caliginosus Sav.</td>
<td>21,1 %</td>
<td>3,06</td>
<td>N. caliginosus</td>
</tr>
<tr>
<td>N. tuberculatus Eisen (1)</td>
<td>0,49</td>
<td>-</td>
<td>N. tuberculatus</td>
</tr>
<tr>
<td>N. giardi giardi Ribaucourt (2)</td>
<td>10,90</td>
<td>-</td>
<td>N. giardi</td>
</tr>
<tr>
<td>N. longus longus Ude</td>
<td>-</td>
<td>5,89</td>
<td>N. longus</td>
</tr>
<tr>
<td>N. nocturnus Evans var. cistercianus B.</td>
<td>-</td>
<td>4,37</td>
<td>N. nocturnus</td>
</tr>
<tr>
<td>N. larvae incertae species</td>
<td>-</td>
<td>39,84</td>
<td>N. larve</td>
</tr>
<tr>
<td>A. icterica icterica Sav.</td>
<td>14,64</td>
<td>7,07</td>
<td>A. icterica</td>
</tr>
<tr>
<td>A. chlorotica chlorotica chlorotica Sav.</td>
<td>19,98</td>
<td>0,03</td>
<td>A. chlorotica</td>
</tr>
<tr>
<td>A. anatomicus</td>
<td></td>
<td></td>
<td>A. anatomicus</td>
</tr>
<tr>
<td>A. rosea</td>
<td>0,34</td>
<td>5,21</td>
<td>A. rosea</td>
</tr>
<tr>
<td>A. larve</td>
<td></td>
<td>11,67</td>
<td>A. larve</td>
</tr>
<tr>
<td>L. castaneus L. castaneus Sav.</td>
<td>0,36</td>
<td>16,57</td>
<td>L. castaneus</td>
</tr>
<tr>
<td>L. disjunctus</td>
<td>0,06</td>
<td>-</td>
<td>L. disjunctus</td>
</tr>
<tr>
<td>L. rubellus L. rubellus Sav.</td>
<td>0,09</td>
<td>-</td>
<td>L. rubellus</td>
</tr>
<tr>
<td>L. terrestris L. (em. Sims) (4)</td>
<td>1,64</td>
<td>0,58</td>
<td>L. terrestris</td>
</tr>
<tr>
<td>L. festivus Sav.</td>
<td>0,23</td>
<td>-</td>
<td>L. festivus</td>
</tr>
<tr>
<td>L. larve</td>
<td>1,26</td>
<td>1,09</td>
<td>L. larve</td>
</tr>
<tr>
<td>D. mammalis Sav.</td>
<td>0,39</td>
<td>0,06</td>
<td>D. mammalis</td>
</tr>
<tr>
<td>D. octaedra Sav.</td>
<td>-</td>
<td>£</td>
<td>D. octaedra</td>
</tr>
<tr>
<td>E. tetraedra</td>
<td>0,14</td>
<td>-</td>
<td>E. tetraedra</td>
</tr>
<tr>
<td>H. gordioide</td>
<td>-</td>
<td>£</td>
<td>H. gordioide</td>
</tr>
<tr>
<td>Indéterminables</td>
<td>2,41</td>
<td>4,15</td>
<td>Indéterminables</td>
</tr>
</tbody>
</table>

Tableau II - Caractéristiques fauniques de deux échantillons P.B.I.-prairies.

Les pourcentages sont calculés sur les dénombrements observés, toutes techniques, dates et prélevats confondus, c'est-à-dire sur les nombres totaux de captures. (1) syn. N. caliginosus altermiscotus B. ; (2) syn. : N. terrestris terrestris Sav. 1826 (non 1820) ; (3) : forme albinique ; (4): syn. : L. herculeus Sav.
<table>
<thead>
<tr>
<th></th>
<th>Na %</th>
<th>Na/Nb</th>
<th>Nb %</th>
<th>Cocons</th>
<th>% postembryons/horizon</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 - 20</td>
<td>20 - 40</td>
</tr>
<tr>
<td>L. castaneus</td>
<td>43,0</td>
<td>4,07</td>
<td>10,59</td>
<td>220,1</td>
<td>94,8</td>
<td>3,7</td>
</tr>
<tr>
<td>D. mammalis</td>
<td>0,4</td>
<td>6,70</td>
<td>> 0,1</td>
<td>-</td>
<td>€</td>
<td>€</td>
</tr>
<tr>
<td>Epigèses</td>
<td>43,4</td>
<td>4,09</td>
<td>10,60</td>
<td>220,1</td>
<td>94,8</td>
<td>3,7</td>
</tr>
<tr>
<td>L. terrestris</td>
<td>0</td>
<td>-</td>
<td>0,58</td>
<td>-</td>
<td>N.E.</td>
<td>N.E.</td>
</tr>
<tr>
<td>N. longus</td>
<td>4,4</td>
<td>0,39</td>
<td>11,18</td>
<td>-</td>
<td>64,29</td>
<td>24,11</td>
</tr>
<tr>
<td>N. nocturnus</td>
<td>7,6</td>
<td>1,50</td>
<td>5,08</td>
<td>-</td>
<td>68,82</td>
<td>23,99</td>
</tr>
<tr>
<td>N. larve</td>
<td>24,6</td>
<td>0,69</td>
<td>35,89</td>
<td>-</td>
<td>77,99</td>
<td>17,34</td>
</tr>
<tr>
<td>Anéciques</td>
<td>36,6</td>
<td>0,70</td>
<td>52,15</td>
<td>70,7</td>
<td>73,96</td>
<td>19,57</td>
</tr>
<tr>
<td>N. caliginosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epiendogé</td>
<td>9,6</td>
<td>4,38</td>
<td>2,19</td>
<td>123,0</td>
<td>86,8</td>
<td>9,1</td>
</tr>
<tr>
<td>A. icterica</td>
<td>2,8</td>
<td>0,17</td>
<td>16,42</td>
<td>-</td>
<td>75,5</td>
<td>16,9</td>
</tr>
<tr>
<td>A. rosea</td>
<td>3,7</td>
<td>0,66</td>
<td>5,63</td>
<td>-</td>
<td>84,4</td>
<td>10,2</td>
</tr>
<tr>
<td>A. chlorotica</td>
<td>0,3</td>
<td>0,58</td>
<td>0,52</td>
<td>-</td>
<td>N.E.</td>
<td>N.E.</td>
</tr>
<tr>
<td>A. larves</td>
<td>3,5</td>
<td>0,27</td>
<td>13,02</td>
<td>-</td>
<td>89,2</td>
<td>8,2</td>
</tr>
<tr>
<td>Endogés</td>
<td>10,3</td>
<td>0,28</td>
<td>35,99</td>
<td>20,9</td>
<td>82,1</td>
<td>12,6</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>71,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau III - Dénombrements relatifs à Giteaux : pourcentage des différentes espèces dans le peuplement total apprécié par pot-piège (Na) et par la méthode bl 60 (lib). Rapport Na/lib. Pourcentage des individus capturés dans chaque horizon par rapport à leur population. Pourcentage des cocons par rapport aux post-embryons du même groupe. Si (= indice de sensibilité), rapport du nombre d'individus capturés par la méthode fo à ceux recensés par le procédé bl 60.
<table>
<thead>
<tr>
<th>Espèces</th>
<th>Fo (pvh)</th>
<th>B1 (pvs)</th>
<th>pfo1,2 (pvh)</th>
<th>pb1 (pvs)</th>
<th>% B1 (pvs)</th>
<th>Espèces</th>
<th>bm (ppfo)</th>
<th>pvs</th>
<th>ppfc</th>
<th>pvs</th>
<th>pbm (ppfo)</th>
<th>% pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epigènes</td>
<td></td>
</tr>
<tr>
<td>L. castaneus</td>
<td>2 007</td>
<td>261</td>
<td>4 678</td>
<td>656</td>
<td>2,33</td>
<td>O. mammalis</td>
<td>242</td>
<td>30</td>
<td>564</td>
<td>71</td>
<td>2,33</td>
<td>0,27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L. distinctus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L. tubellus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epiéndogèses</td>
<td></td>
</tr>
<tr>
<td>N. caliginosus</td>
<td>773</td>
<td>108</td>
<td>1 404</td>
<td>196</td>
<td>1,81</td>
<td>N. caliginosus</td>
<td>12 770</td>
<td>1 596</td>
<td>10 159</td>
<td>2 394</td>
<td>1,50</td>
<td>9,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E. tetraedra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A. chlorotica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endogèses</td>
<td></td>
</tr>
<tr>
<td>A. rosea</td>
<td>818</td>
<td>114</td>
<td>3 104</td>
<td>435</td>
<td>3,79</td>
<td>A. rosea</td>
<td>22 585</td>
<td>2 623</td>
<td>112 925</td>
<td>14 116</td>
<td>5,00</td>
<td>54,50</td>
</tr>
<tr>
<td>A. icterica</td>
<td>3 478</td>
<td>487</td>
<td>26 792</td>
<td>3 751</td>
<td>7,70</td>
<td>A. icterica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. larve</td>
<td>209</td>
<td>126</td>
<td>4 947</td>
<td>693</td>
<td>5,50</td>
<td>A. anatomus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5 193</td>
<td>727</td>
<td>34 843</td>
<td>4 870</td>
<td>6,70</td>
<td>A. tuberculatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anéciques</td>
<td></td>
</tr>
<tr>
<td>N. nocturnus</td>
<td>11 920</td>
<td>1 660</td>
<td>24 773</td>
<td>3 458</td>
<td>2,08</td>
<td>N. giardi</td>
<td>21 864</td>
<td>2 733</td>
<td>65 592</td>
<td>8 199</td>
<td>3,00</td>
<td>31,54</td>
</tr>
<tr>
<td>N. longus</td>
<td>15 440</td>
<td>2 161</td>
<td>49 724</td>
<td>6 961</td>
<td>3,22</td>
<td>A. rhinoceros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. anecines</td>
<td>15 947</td>
<td>2 233</td>
<td>47 690</td>
<td>6 675</td>
<td>2,99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>43 307</td>
<td>6 063</td>
<td>122 178</td>
<td>17 105</td>
<td>2,82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reste</td>
<td>585</td>
<td>62</td>
<td>1 859</td>
<td>260</td>
<td>3,17</td>
<td>L. terrestris</td>
<td>3 092</td>
<td>403</td>
<td>6 006</td>
<td>1 114</td>
<td>2,33</td>
<td>4,48</td>
</tr>
<tr>
<td>M. mammalis</td>
<td></td>
</tr>
<tr>
<td>H. nordiiodes</td>
<td>1,14%</td>
<td>585</td>
<td></td>
<td>62</td>
<td>1,14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. terrestris</td>
<td></td>
</tr>
<tr>
<td>Total général</td>
<td>51 805</td>
<td>726</td>
<td>154 963</td>
<td>23 056</td>
<td>3,18</td>
<td></td>
<td>61 320</td>
<td>7 465</td>
<td>147 634</td>
<td>25 006</td>
<td>3,38</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Tableau IV : Estimation des biomasses en mg/m²

Légende -
- p = poids
- v = tube digestif vide
- s = sec
- o = observé
- pvh = poids frais vide
- pvs = poids sec vide
- ppfo = poids plein de formol
- pvsc = poids sec, tube digestif vide, corrigé
- bm = méthode formol
- B1 = méthode absolue (bèche à - 60cm)
- C = coefficient de transformation
Constantes

Tissulaires
- $C = 0.47 \text{ pvs}$
- $N = 0.105 \text{ pvs}$
- Protéines $= 0.656 \text{ pvs}$
- Kcal $= 5.1 \text{ pvs}$

Excrétion
- 1 g Urée $= 2.53 \text{ Kcal} = 0.4 N = 0.2 C$
- 1 g ammoniaque $= 4.137 \text{ Kcal} = 28/60 N = 0.467 N = 0.0 C$
- 1 g protéines $= 4.1 \text{ Kcal} = 0.16 N = 0.47 C$
- 1 g CO$_3$Ca = "0 Kcal" $= 0.0 N = 0.12 C = 0.4 C_a$

Respiration
- 1 l O$_2 = 4.825 \text{ Kcal} \ (à \ \text{QR} = 8.2)$

Émanations

Élaboration
($B = \text{biomasse}$)
- cadavres + cocons : épigés $2 \times B$; épiendogés ...
- amputats : épigés $= 0$; épiendogés $0.1 B$
 endogés $= 0.05 B$; anéciques $= 0.1 B$

Excrétion
(à grammes/an)
- ammoniace cutanée : $182 \times 10^{-4} \times \text{pvs}$
 intestinale : 1.5 fois la cutanée
- urée cutanée : $26 \times 10^{-2} \times \text{pvs}$
 intestinale : 0.28 x excrétion cutanée
- mucus protéique : $69 \times 10^{-2} \times \text{pvs}$

Respiration
- QR physiologique 0.82 ; QR "observé" $= 0.82 \ (\text{différence} = \text{CO}_3\text{Ca})$
 - respiration en l/an épigés $= 4.69 \ l \ O_2 \times g \ \text{pvs}$
 - épiendogés $= 2.82 \ l \ O_2 \times g \ \text{pvs}$
 - endogés $= 2.82 \ l \ O_2 \times g \ \text{pvs}$
 - anéciques $= 1.88 \ l \ O_2 \times g \ \text{pvs}$

Tableau V - Constantes et coefficients utilisés
<table>
<thead>
<tr>
<th>Éléments</th>
<th>Cîteaux</th>
<th>Kcal/24h</th>
<th>mg/24h</th>
<th>BORCULO</th>
<th>Kcal/24h</th>
<th>mg/24h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>al ou mg/24h</td>
<td></td>
<td></td>
<td></td>
<td>al ou mg/24h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tissus</td>
<td>énergie</td>
<td>N</td>
<td>C</td>
<td>esquis</td>
<td>énergie</td>
</tr>
<tr>
<td></td>
<td>gênes</td>
<td></td>
<td></td>
<td></td>
<td>gênes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>épithélium</td>
<td></td>
<td></td>
<td></td>
<td>épithélium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>muqueux</td>
<td></td>
<td></td>
<td></td>
<td>muqueux</td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td>total</td>
<td></td>
</tr>
<tr>
<td>Élaboration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sécrétion</td>
<td>gênes</td>
<td></td>
<td></td>
<td></td>
<td>gênes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>épithélium</td>
<td></td>
<td></td>
<td></td>
<td>épithélium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>muqueux</td>
<td></td>
<td></td>
<td></td>
<td>muqueux</td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td>total</td>
<td></td>
</tr>
<tr>
<td>Excrétion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>salive intestinale</td>
<td>gênes</td>
<td></td>
<td></td>
<td></td>
<td>gênes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>épithélium</td>
<td></td>
<td></td>
<td></td>
<td>épithélium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>muqueux</td>
<td></td>
<td></td>
<td></td>
<td>muqueux</td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td>total</td>
<td></td>
</tr>
<tr>
<td>Salive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gênes</td>
<td></td>
<td></td>
<td></td>
<td>gênes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>épithélium</td>
<td></td>
<td></td>
<td></td>
<td>épithélium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>muqueux</td>
<td></td>
<td></td>
<td></td>
<td>muqueux</td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td>total</td>
<td></td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gênes</td>
<td></td>
<td></td>
<td></td>
<td>gênes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>épithélium</td>
<td></td>
<td></td>
<td></td>
<td>épithélium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>muqueux</td>
<td></td>
<td></td>
<td></td>
<td>muqueux</td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td>total</td>
<td></td>
</tr>
<tr>
<td>Emission totale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gênes</td>
<td></td>
<td></td>
<td></td>
<td>gênes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>épithélium</td>
<td></td>
<td></td>
<td></td>
<td>épithélium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>muqueux</td>
<td></td>
<td></td>
<td></td>
<td>muqueux</td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td>total</td>
<td></td>
</tr>
</tbody>
</table>

Tableau VI : Estimation des principaux flux métaboliques dus à la consommation dans les préférés PGI
<table>
<thead>
<tr>
<th>Catégories</th>
<th>Nombre de transit par jour (moyenne approximative)</th>
<th>Nombre de jours d'activité</th>
<th>Nombre de transits par an</th>
<th>Cteaux transit Tt g/m²/an</th>
<th>dont turricules g/m²/an</th>
<th>Borculo g/m²/an</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epigés</td>
<td>3</td>
<td>250</td>
<td>840</td>
<td>550</td>
<td>=</td>
<td>50</td>
</tr>
<tr>
<td>Epiendogés</td>
<td>4</td>
<td>280</td>
<td>1120</td>
<td>200</td>
<td>=</td>
<td>2442</td>
</tr>
<tr>
<td>Endogés</td>
<td>6</td>
<td>320</td>
<td>1920</td>
<td>9366</td>
<td>=</td>
<td>24280</td>
</tr>
<tr>
<td>Anéciques</td>
<td>4</td>
<td>280</td>
<td>1120</td>
<td>20860</td>
<td>7415</td>
<td>8264</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>30984</td>
<td></td>
<td>35150</td>
</tr>
</tbody>
</table>

Tableau VII - Bilan de la terre transitant par an dans le tube digestif des lombriciens