L'interprétation morphologique des lombriciens: un commentaire de l'évaluation numérique de R. W. Sims

MARCEL B. BOUCHÉ

(Accepté: 15.05.1979)

1. Introduction

La présentation au colloque de Padova du travail de R. W. Sims est un événement d'un grand intérêt car l'auteur reprend, complète et tente, par une approche absolument différente, de classer les mêmes lombriciens que ceux que j'ai étudiés avant 1972. L'intérêt ne provient pas d'une amicale confrontation intellectuelle mais du fait que les deux auteurs se réfèrent aux mêmes observations et, sans exclusion à priori, s'efforcent de tenir compte de toutes ces observations. Si Sims écrit « Bouché (1972) introduced many new generic concepts for the French lumbricids which he proposed on a totality of attributes instead of the more traditionnal methodology of regarding the expression of only one or two characters as being significant », il est évident que Sims prend également en compte tous les caractères morphologiques disponibles. Last but not least Sims complète mon information de base en s'appuyant sur l'étude de Perel (1976a) qui donne des informations sur les vésicules néphridiennes à partir d'un matériel commun. Le présent commentaire a été grandement facilité par la copie du manuscrit de R. W. Sims aimablement communiquée par l'auteur que je remercie vivement.

2. Les différences d'objectifs

Remarquons que ni Sims, ni Perel, ni Bouché n'ont la même expérience ni les mêmes objectifs, ce qui veut dire qu'à partir d'un même fait (caractère morphologique ou position d'un taxon dans l'analyse multifactorielle, etc.) notre expérience nous conduit à des interprétations différentes. Toutefois, si ces interprétations sont différentes, elles ne sont généralement pas divergentes mais complémentaires. Comme Sims l'indique dans son titre, il cherche une « evaluation of taxonomic characters », comme mon livre l'indique j'ai travaillé sur les « lombriciens de France ; écologie et systématique ». L'objectif de Sims est d'essayer de dégager les moyens phylétique d'un classement, mon problème était de comprendre les lombriciens à la fois dans leur milieu, leur vie et leur histoire (philétique). Je rappellerai ici très brièvement mon éclairage du problème, celui de Sims étant donné dans l'article en discussion. 1°) Les lombriciens vivent, c'est-à-dire que leurs caractéristiques actuelles reflètent leur mode de vie ; par exemple toutes leurs structures doivent s'adapter à la vie en galerie (aspect verniforme). 2°) Un caractère n'est distingué qu'analytiquement par le morphologiste mais n'a aucun sens fonctionnel isolément : la position ou l'aspect d'un organe n'est pas fortuit mais reflète l'évolution et l'harmonie fonctionnelle de l'ensemble de l'individu. Evolutivement, il n'y a pas d'organes mais des organismes. 3°) Si l'état morphologique actuel reflète d'abord le mode de vie actuel, les lombriciens ne sont pas apparus ex nihilo mais dérivent mutuellement d'ancêtres communs ... Dans certains cas précis, les contraintes vitales ont « obligé l'évolution » à suivre un certain ordre ; ce sont ces cas qui m'ont permis de reconnaître des parentés. 4°) Une similarité précise morphologique peut refléter une identité de mode de vie ou/et une parenté ; seule une critique au cas par cas permet de distinguer, en situation favorable, convergence fonctionnelle et phylétisme, en pensant toujours qu'un organe avant tout fonctionne et sert à la survie du taxon. 5°) Le
zoologue n’est pas toujours (limite de l’étude à quelques caractères ou/et à une aire géographique) en présence d’une information suffisante: ses conclusions ne peuvent être que partielles.

En conséquence, je n’ai considéré comme appartenant à un genre naturel que les taxons dont je pouvais prouver la parenté à l’espèce type. Pour les autres, pour lesquels nous n’avons pas (encore) d’arguments déterminants, des genres conventionnels permettent de satisfaire la nomenclature binominale mais ces derniers genres n’ont aucun sens phylélique: c’est la justification d’une double systématique.

En introduisant une étude multivariée sur les lombriociens, Sims a d’abord donné une liste importante de caractères morphologiques qui certes ne décrivent pas tout mais en raison de (22°) représentent beaucoup plus qu’eux-mêmes: arrivés à un certain stade, des caractères sont redondants (par exemple, dire qu’il n’y a pas de spermathèques ou de puberculums est identique; le post-gésier implique un pore mâle antéélitolien; etc.) et l’on peut considérer qu’indirectement tout le lombricien actuel est décrit. Cela ne signifie pas que les caractères qui reflètent avec certitude les parentés sont reconnaissables et que les degrés de similitude ne reflètent pas une convergence fonctionnelle.

3. Interprétation

La figure 1 (Sims 1980, p. 216) donne une spectaculaire démonstration de la validité du concept de catégories écologiques. L’axe X différencie les anéciques (—) des épigèses (+), tandis que ces deux groupes sur l’axe des Y sont en (—) et s’opposent aux endogèses en (+). Cette classification morpho-fonctionnelle (Bouché 1971) utilise la morphologie pour reconnaître le rôle des lombriociens, en ce sens qu’il y a nécessairement corrélation entre caractères et mode de vie. Cette classification qui distingue trois catégories (épigèses, endogèses, anéciques) tient compte également de l’influence de l’humidité, morphologiquement reconnaissable.

La figure 1 coïncide pratiquement avec le classement triangulaire proposé récemment (Bouché 1977). Les épigèses (venata, attenisi, alpina, octaedra, hybrida, foetida, mammalis, rubida et, dans un stade intermédiaire, arverna tetraedra et lacustris) sont bien localisés.

Les anéciques (giardi, longa, savignyi, gigas, dugesi et occidentalis avec dans une certaine mesure corsicana, caliginosa et arverna) sont également groupés. Le reste est constitué par les endogèses, groupe beaucoup plus composite. La partie centrale plus «indéterminée» est en fait fortement marquée par un autre «axe», hors du plan, caractérisant l’humidité: putricola, tetraedra, lacustris, cupulifera, georgi sont, comme ochulus qui est moins bien groupé, des hygrophiles stricts. Notons que chlorotica et rubida, qui ont des «formes» hygrophiles (chlorotica «typica» et subrubicunda respectivement), sont également situés à proximité des espèces hygrophiles.

L’interprétation des caractères donnée par Sims renforce cet aspect: la pigmentation peut varier avec le mode de vie et constitue le fil conducteur le plus rapide à cet égard ... C’est aussi un caractère variable intrinséquement (formes à pigmentation différente) en fonction d’adaptations secondaires à d’autres modes de vie. De même les types de néphridies, de glande de Morren (dugesi est bilobé, secondairement quadrilobé), de vésicules sémiales, etc., tendent à expliquer les phénomènes écologiques décrits ci-dessus.

La figure 6 permet un abord précis de l’adaptation. L’axe X indique les formes «filamenteuses» pigmentées, micro- ou rhizo-phages de taille moyenne en (—) et les formes pigmentées de taille importante en (+), la partie médiane étant occupée par des animaux de taille intermédiaire, essentiellement des endogèses géophages. L’axe Y indique négativement l’hygrophile (ochulus, putricola, chlorotica, cupulifera, georgi). L’analyse des organes n’apporte que la confirmation de l’étude de la figure 1: toutefois, l’épididymie présente une surprenante distribution et un intérêt que je ne soupçonnais pas (fig. 9).

Les liaisons de similarités des figures 1 et 6, ainsi que les groupements de la figure 11, font apparaître d’intéressants phénomènes. Alors que l’on peut suivre morphologiquement (déplacement du clitellum, etc.), spatialement (aires contiguës) et historiquement (paléographie), la phylogénèse de certaines lignées (Scherothecia: ici S. gigas, S. savignyi, S. occidentalis, S. dugesi, S. corsicana; Proselodrilus: ici P. biserialis, P. pratcola, P. pyrenacus

228
et Ethnodrilus: ici E. zajonicí), le travail de Sims soulève, dans la limite de sa validité, des problèmes intéressants. Ces problèmes devront être rediscutés ailleurs en détail avec une modernisation des arguments (tectonique des plaques notamment) mais les résultats présentés confirment généralement les liaisons ou soulignent des affinités, telle celle entre corisiana — savignyi — occidentalis, alors que le lien étroit et prouvée qui existe entre gugius et dujesi n’apparaît jamais. Extrêmement intéressante est la mise en évidence d’une liaison sardonica — corisiana, probablement correcte, mais qui ne peut être prouvée par des arguments classiques. Celle-ci souligne, comme l’aire d’Hormogaster praecox, les affinités faunistiques des Pyrénées Orientales, (de la Saradaigne), de la Corse et de quelques «contacts provençaux» antérieurs à 40 millions d’années. De même, les Ethnodrilus et Prosellodrilus sont probablement apparentés et ont dû appartenir à une même aire avant l’ouverture du Golfe de Gascogne.

4. Conclusion

Comme le souligne Sims, la méthode employée a des limites techniques qui ne font qu’un outil. En première approximation, elle illustre que les lombriciens vivent, c’est-à-dire sont morphologiquement en harmonie avec leur mode de vie! Alors que je n’ai utilisé pour la définition des catégories écologiques que peu de caractères morphologiques repris dans l’étude de Sims, cet auteur démontre que la somme des caractères disponibles est utilisable à cet égard. La démonstration de l’existence simultanée et pondérée de nombreux caractères communs à des taxons ne peut pas seule permettre de reconnaître une phylogenèse (et surtout de la prouver) mais la technique développée par Sims constitue une argumentation supplémentaire très précieuse. Autre fait essentiel, l’introduction de caractères additionnels (vésicules néphridiennes, étudiées par Peral) ne bouleverse pas les faits prouvés en matière de phylogénie et écologie mais, au contraire, tend à les renforcer. Enfin, ce qui est physiologiquement évident, aucun caractère n’explique seul et sans nuance, un classement; même si certains sont plus «utiles» que d’autres, il est indispensable de poursuivre les recherches et, en attendant, d’être prudent sur les parties non démontrables. Il est enfin souhaitable de recouper nos conclusions par des faits indépendants de l’étude morphologique, telles la chorologie, la paléogéographie, la génétique des populations, etc.

5. Résumé · Summary

L’analyse morphologique globale des lombriciens à partir d’un même matériel a été effectuée par Bouček (1972) et Sims (même ouvrage) avec des objectifs et des techniques différents mais synthétiques. Les deux études convergent vers des conclusions sinon identiques au moins complémentaires. Si l’analyse multifactorielle permet de distinguer des groupements, seuls les groupements écologiques (fonctionnellement actuels) sont nets alors que la définition de taxons, sur cette seule base, est préma- turée. Toutefois, l’analyse multivariable pourrait fortement aider à l’interprétation et mettre en évidence des phénomènes phylétiques insoupçonnés.

Morphological interpretation of lumbricids: a comment on numerical evaluation by R. W. Sims

A total morphological analysis of earthworms was carried out by Bouček (1972) and Sims (same book) with the same data and a synthetic point of view but different aims and techniques. Both works lead to complementary conclusions, although rather different. Multivariate analysis allows to recognize groups; only ecological groups (present way of life) are obvious while the delineation of taxa, on this unique background, is premature. Nevertheless, multivariate analysis could be a good help to interpret and to reveal unsuspected phylectic links.

6. Références bibliographiques
(Se reporter à l’article de Sims, p. 226)

Adresse de l’auteur: M. B. Bouček, Station de Recherches sur la Faune du Sol, 7, rue Sully, F - 21084 Dijon CEDEX.
VI. Allunionskonferenz über Probleme der Bodenzoologie
(Minsk, 20. bis 22. September 1978)

Die Konferenz war von 250 sowjetischen Spezialisten (Zoologen, Mikrobiologen, Algologen, Bodenkundler, Agrar- und Forstwissenschaftler) besucht, die 19 Universitäten, 21 Hochschulen, 29 Institute der Akademien der Wissenschaften der Unionsrepubliken bzw. der Akademie der Wissenschaften der UdSSR, 11 Zweiginstitute, 1 Landwirtschaftsakademie, 4 landwirtschaftliche Versuchs- und Quarantäneuntersuchungsanstalten sowie eine Reihe anderer Einrichtungen der Wissenschaft und der Praxis vertraten. Als Gäste der Konferenz nahmen aus der VR Polen und der VR Ungarn jeweils zwei und aus der ÜSSR und der DDR je ein Bodenzoologie teil.

55 Vorträge und 179 Mitteilungs-Demonstrationen zu den verschiedensten bodenzoologischen Problemen vermittelten den Teilnehmern einen recht umfassenden Überblick über den gegenwärtigen Stand der diesbezüglichen Forschung in der Sowjetunion. Integriert in die Konferenz war ein Symposium (5 Vorträge) der Sektion „Destructive organismer Materie“ des Wissenschaftlichen Rates der Akademie der Wissenschaften der UdSSR zum Problem „Biologische Grundlagen der Erschließung, Umgestaltung und des Schutzes der Tierwelt“.

Folgende Themenkreise standen im Vordergrund der Tagung:

1. Rolle der Tiere bei der Bildung und der Dekomposition organischer Rückstände. Hierzu Beiträge u. a. von A. S. Tili, V. G. Mordkovič, Novosibirsk, (Tenebrionidae); B. V. Valschmedov, Dušanbe, (Termiten); N. T. Zalešskaja, Moskau, (Enchytraeidae); I. K. Sukacken, Vilnius, (Collembola); T. S. Perel’, Uspenskoe, (Lambdidae); L. S. Kozlovskaja, N. N. Rako, Petrozavodsk, (Fermentaktivität in Bodenwirbellosen-Exkrementen); T. A. Scherbakova, Minsk, (Rolle der Fermemente bei der Transformation organischer Stoffe); O. P. Atlaninjčje u. a., Vilnius, Abfälle der Futterhefeproduktion).

2. Einfluss der wirtschaftlichen Tätigkeit des Menschen auf die Veränderung der Bodenfauna. Berichte u. a. von I. S. Eitminafjuejje u. a., Vilnius, V. K. Dmitrienko, Krasnojarsk, V. F. Samersov u. a., Priluki, (Insektizide); V. V. Strazdě, Vilnius, (Strohdungung auf Bodeninseln); V. A. Andrienko, Kiev, (Getreide-Zuckerrüben-Fruchtfolge); S. P. Demenjčjka, Kisjew, (Vorfruchtwirkung auf Nematoden); I. Ju. Elijawa u. a., Tbilisi, (intensive Beweidung auf Nematoden); V. G. Džolin, V. N. Storbrčajej, Kiev, (Bewässerung auf Drahtrumwurmen); T. F. Khutogolova, Odessa, (Bewässerung auf Mikroarthropoden); G. N. Dormidontov u. a., Leningrad, (Bodenbearbeitung); V. A. Kabanov, Belgorod, (Strukturänderungen der Boden-Schädlingsfauna in Kulturlandschaften); L. D. Filatova u. a., Vladivostok, (Staphylinidae); V. K. Eglit, D. K. Kaktjna, Skrjew, (Bodenfauna).

