DES VERS DE TERRE POUR LE TRAITEMENT DES DÉCHETS

MARCEL B. BOUCHÉ*

Depuis une dizaine d’années on cherche à utiliser les vers de terre, ou lombriciens, comme moyen d’action ou de surveillance contre les nuisances dans l’environnement. Ces animaux constituent aujourd’hui une armée de nettoyeurs au service des autorités locales, des particuliers, des industriels...

Les lombriciens constituent la première masse animale de la communauté européenne, probablement nettement plus de 50 % de la masse totale des animaux en Europe. Ils ne sont étudiés que par une poignée de chercheurs, de sorte qu’il existe un véritable divorce entre, d’une part, les potentialités et les problèmes liés à ces animaux et, d’autre part, la possibilité pour la communauté scientifique et technique de répondre à ces problèmes. Une telle situation est semblable dans les autres pays « développés » (USA, Japon, Canada, URSS, etc.) et résulte à la fois des disciplines académiques qui prennent peu en compte ce groupe « particulier » et des choix budgétaires. Les lombriciens, souterrains, ne faisant pas de dégâts et n’intervenant qu’indirectement dans la production alimentaire, sont généralement ignorés des responsables décideurs. Cette situation laisse le champ libre à des aigrefins, semi-innovateurs ou vulgarisateurs qui confondent volontiers les lombriciens dans une même espèce (le « lombric ») ou les qualifient de noms « scientifiques » ou décoratifs.

Trois catégories
La réalité est très différente : il existe des centaines d’espèces de lombriciens ayant chacune des aptitudes et des rôles écologiques spécifiques. En simplifiant beaucoup, on peut toutefois considérer trois catégories « typiques », étant entendu que de nombreuses espèces occupent des positions intermédiaires : les anéciques, les enodogés et les épigés. Chacune de ces catégories a des caractéristiques morphologiques, physiologiques et écologiques.

* Laboratoire de zoologie du sol, CEPE, B.P. 5051, 34033 Montpellier.
sentent de 20 à 50 % de la biomasse des sols fertiles en Europe tempérée et jouent un rôle complémentaire à celui des anéciques dans la fertilité biologique des sols. Pris globalement, endogés et anéciques, abrités dans le sol en loge de estivation pendant la période de sécheresse sont actifs en automne, hiver (sauf période très froide) et printemps.

Les épigés vivent à la surface du sol dans les accumulations organiques (litières, fèces de bétail, sous les écories des troncs, etc.). Ils se reproduisent beaucoup car ils doivent faire face aux pires aléas ; totalement éliminés pendant les saisons sèches, ils résistent sous forme de cocons ; les prédateurs, très nombreux, s’en nourrissent abondamment. Vivant dans un milieu riche (accumulation organique) relativement chaud (surface), ils compensent leur perte par une croissance rapide la conduisant à l’état adulte en quelques semaines, et à déposer rapidement de nombreux cocons contenant souvent plusieurs embryons chacun.

Les anéciques sont des gros vers de terre creusant des galeries « subverticales », se reproduisant relativement peu, se nourrissant la nuit en surface de matière organique (litière) qu’ils mélange à de la terre prise en profondeur. Dans les sols fertiles de l’Europe tempérée, ils sont dominants (souvent 80 % du poids des lombriciens) ; ils sont responsables de tortillons de terre déposés à la surface et favorisent grandement les qualités biologiques d’un sol (infiltrabilité de l’eau, aération, recyclage des matières organiques mortes, bonne stabilité et structure des sols, microflora active). Les endogés se nourrissent surtout dans le sol des divers débris organiques (ils sont souvent spécialisés en sous-catégories) ; leur taille est variable, ils ne portent pas de pigment et leur reproduction est souvent modeste car ils sont bien à l’abri des prédateurs ; ils représenteront une croissance rapide la conduisant à l’état adulte en quelques semaines, et à déposer rapidement de nombreux cocons contenant souvent plusieurs embryons chacun.

Laborieux et décomposeurs

Si anéciques et endogés laboroent les sols des prairies, forêts, champs cultivés, en brassant les couches minérales avec les particules organiques, les épigés sont spécialisés seulement dans les accumulations organiques qu’ils colonisent et consomment rapidement. Les premiers sont des « laboroents », les seconds sont inaptes à ce travail. Tous les lombriciens interviennent pour accélérer la décomposition de la matière

LA BIOTECNOLOGIE DU FUTUR !...

SETRIC GENIE INDUSTRIEL

VOTRE PARTENAIRE...

- Fermenteurs de laboratoire
- Fermenteurs pilotes
- Fermenteurs industriels
- Fermenteurs pour applications spéciales
- Instrumentation spécifique
- Automatismes
- Micro électronique

Autres activités : Froid scientifique - Froid industriel - Traitements physiques des liquides alimentaires - Appareils de laboratoire Jouan - Produits de fermentation et enzymatiques.
organique et favoriser l’activité microbienne. Globalement, ils permettent ainsi la formation d’humus stable et la libération des éléments biogènes (azote, phosphore, potassium...). Ces éléments ont été « emprisonnés » dans les molécules organiques lors de synthèses faites par les végétaux et les animaux puis abandonnés comme débris organiques aux décomposants que sont les lombriciens et les micro-organismes. Ainsi, le recyclage des éléments biogènes est assuré.

Autre propriété générale, les prédateurs trouvent dans les lombriciens un aliment abondant et riche. C’est la source normale de ces éléments indispensables à la croissance pour les suidés (porcs, sangliers), les volailles (poulets), les poissons (particulièrement les salmonidés) car les lombriciens sont entraînés dans les rivières après les fortes pluies. Leur composition (voir tableau) nous indique un taux élevé de protéines, riches en acides aminés variés dont la lysine, une proportion de corps gras réduite, correspondant à des poissons « maigres », mais au total, une très grande variété. Une telle composition est favorable pour en faire un aliment pour animaux... ce qui n’est que le constat d’un phénomène naturel.

Les déchets organiques et les lombriciens

Le traitement des déchets organiques par les lombriciens est une opération parfaitement réalisable. Il s’agit d’un compostage avec évacuation simultanée de vers de terre, ceux-ci accélérant la vie microbienne. Cette opération présente des caractéristiques intéressantes.

Un terreau organique

Les lombriciens ingèrent seulement la matière organique et produisent des fèces « calibrées » à la taille de leur intestin (quelques millimètres) : on peut séparer par criblage les matières indésirables (verre, plastiques, gravats), par exemple dans les ordures ménagères, et obtenir un terreau ou lombricompost.

De la farine de lombriciens

Les lombriciens croissent et se reproduisent rapidement car on utilise des éphys typiques. Les deux souches, actuellement utilisables, Eisenia fetida fetida et Eisenia fetida andrei (souvent mal orthographié « fettida ») assurent, en conditions optimales, leur cycle complet en environ 10 semaines et, au stade adulte, donnent environ 1,5 jeune par jour. On peut obtenir 6 kg poids sec (= 0 % d’humidité) de « farine de lombriciens » par tonne d’ordure... ce produit étant au moins l’équivalent technique de la farine de poisson. Dans certains cas les animaux consommateurs peuvent prélèver eux-mêmes directement cette production.

Des lombriciens sentinels

Les lombriciens comme les autres organismes accumulent dans leurs tissus de nombreux contaminants (métaux lourds, pesticides, PCB), de sorte que la surveillance de la qualité du produit « lombricien » permet simultanément un contrôle des terreaux obtenus et une enquête sur les sources de nuisances. Ces problèmes sont rares mais pourraient se présenter, dans les boues d’épuration notamment.

Ceux animaux s’adaptent à de très nombreuses sources organiques : ordures fraîches, boues d’épuration, vidanges, déchets d’industries agro-alimentaires, lisiers d’élevages, etc., les déchets liquides devant être mélangés à des déchets solides, le pH voisin de la neutralité.
Le lombricompostage

Ils peuvent enfin être utilisés directement dans les points de production de déchets organiques, les volumes traitables étant modulables. Le traitement par lombricompostage exige une bonne aération des substrats servant à l'élevage, ce qui est une contrainte d'espace et de coût, mais le procédé élimine les mauvaises odeurs.

L'optimum thermique des lombricompostages se situe entre 20° et 25 °C. Certains climats peuvent donc contraindre à des aménagements plus ou moins lourds. En plein air, l'activité est souvent maximale en été... peu avant la demande du marché en matière organique (automne).

Les lombriciens et le lombricompostage semblent diminuer très sensiblement la quantité de certains germes pathogènes (Salmonella) mais les études en ce domaine sont rares.

En résumé, les vers de terre peuvent fournir deux produits dont la CEE est déficitaire, un terreau organique et une farine de protéines-acides gras : ils peuvent assurer un bon contrôle des nuisances (déchets, contaminant et probablement agents pathogènes), une séparation naturelle des produits indésirables (verre, plastiques... recyclage par ailleurs). Il ne s'agit en définitive que d'un recyclage naturel par un procédé où les êtres vivants reprennent leur place (voir schéma). Ces recherches débouchent sur une économie d'énergie et de deves.

Carence des recherches et escroqueries

Les chercheurs compétents s'intéressant aux lombriciens envisagés sous l'angle écologique et économique sont rarissimes. La dispersion des moyens a conduit à de multiples expériences mal encadrées où les problèmes de la gestion des déchets, de la surveillance des nuisances, de l'optimisation technique et économique du lombricompostage dans les conditions variées des déchets, climats, contraintes locales, etc., ne sont jamais pris en compte simultanément. Le fait qu'il n'y ait pas préalablement une véritable recherche (technique et économique) sur les vers de terre bloque actuellement l'innovation et laisse la porte ouverte aux pires excès... et ceux-ci ne sont ni rares ni nouveaux.

Depuis la guerre, aux USA, des éleveurs de vers de terre, produisant par « vermiculture » des appâts pour la pêche, tentent d'accroître le marché en vantant auprès des agriculteurs les mérites, très réels, des vers de terre dans les sols... et leur vendent des vers épuisés incapables de survivre dans les champs et surtout de fournir le travail des endogènes et anéciques.

Un bluff commercial présente ces lombriciens inadaptés comme la « solution » des problèmes des sols américains !

Autre escroquerie, la vente de prétendus « hybrides » ou géniteurs extraordinaires, qui se développent aujourd'hui en Europe avec des noms alléchants tel le « ver rouge de Californie », ne porte que sur les vers du fumier (Eisenia fetida) banals ou des mélanges d'animaux divers. En fait, aucune recherche méthodique de souche convenable n'existe (ce qui est regrettable) et a fortiori aucun « hybride » n'est disponible.

Plus récemment, le « vermicomposting » a focalisé l'intérêt sur le compost (et non plus sur les lombriciens). A côté de recherches et travaux sérieux, un bluff est à nouveau apparu, au moins en Europe : la vente de terreau fort cher pour ses qualités enzymatiques. Toute motte de terre contient effectivement de nombreuses enzymes, les fèces de lombriciens en sont très riches... mais où est la justification économique de leur vente à des prix incroyables ?

Reboucler les cycles naturels

Les lombriciens offrent donc depuis toujours des propriétés remarquables qui font que traditionnellement les déchets organiques ne sont pas un problème, mais au contraire une excellente chose... un engrais. Aujourd'hui la concentration (dans nos élevages « hors sol »), nos industries agro-alimentaires ou papeteries, nos villes) de masses considérables de matière organique mêlée à des contaminants et indésirables, conduisent à considérer ces déchets comme « non valorisables » et « polluants ». La remise à leur place des lombriciens permettrait de reboucler les cycles naturels de l'humus et de la production de protéines dans de bonnes conditions. Les trois contraintes (température, humidité, aération) peuvent permettre par des dispositifs variés — propres à chaque situation locale — de tirer parti de leur possibilité. A côté des autres procédés (décharges qui ne traitent et ne valorisent rien, incinération coûteuse et contaminante, compostage qui conduit à des produits mal contrôlés riches en verre et plastique, méthanisation aléatoire et d'usage limité) le lombricompostage apparaît comme une alternative qui devrait trouver sa place d'abord dans des circonstances favorables, puis plus généralement.

Le fait que les institutions de recherches aient pratiquement délaissé ou peu développé cette possibilité conduit à des initiatives dont certaines sont porteuses d'avenir tandis que d'autres, clamées sans considération éthique, ne peuvent que discréditer une série de procédés d'avenir.

Une version anglaise de cet article est parue dans le numéro de septembre de l'ULA nouvelle (Union internationale des villes et pays locaux, La Haye).

BIBLIOGRAPHIE

De nombreuses publications spécialisées portent sur le sujet évoqué ici. Aucune synthèse n'est disponible et les applications dépendent largement de considérations locales. On peut citer avec profit :

BOUCHE, M.B., 1972 - Lombriciens de France. Écologie et systématique, 679 pages. (Editions INRA, Service de documentation, route de St-Cyr, 78000 Versailles, France.) Ce dernier livre ne traite pas du problème du traitement des déchets mais donne un aperçu des bases sur les espèces, catégories écologiques, exigences et rôle des lombriciens en France (la pluspart des espèces sont européennes).